Modernization of Electric Railways

Part 2: Energy-efficient & Alternative fuel Vehicle Drive Systems for Urban, Regional and High Speed Train

Eisuke MASADA Tetsuo UZUKA
(Railway Technical Research Institute)
1. Introduction

• Improving the energy efficiency of vehicle drive systems is an important issue for railway operators from various aspects, e.g. reducing operating costs and vehicle weight.

• The modern society aims to enhance the network of environmentally friendly rail transportation, especially in urban areas to expand the mobility and promote the modal shift. The transportation for the last one mile is also needed in this context.

• These goals are being steadily realized by new technologies such as SiC power devices, lithium-ion batteries, fuel cells and I.o.T.
2. Urban transportation

- Energy recovery by regenerative braking is widely utilized for highly frequent operation.
- The battery assisted drive can sustain train operation at power outage at the natural disaster.
- For the underground system, the cross-sectional area of tunnel should be as small as possible to reduce construction costs.
- The energy used by the air conditioning facilities of vehicles also should be considered.
Inverter Drive System & Energy Recovery

• The bi-lateral d.c./a.c. power conversion recovers roughly 30% of motoring energy through regenerative braking. The synchronous motor with permanent magnets can improve energy efficiency further.

• The inverter with SiC power devices improve the recovery rate up to 10% higher with lower switching losses, higher operating frequency and temperature.

• The direct drive system with linear induction motor reduces the height of bogie truck and realizes the smaller cross section tunnel.
Modern Drive Systems For Urban Transportation

- **Asynchronous Motor Drive**
 - Inverter
 - Motors

- **Synchronous Motor Drive**
 - Inverter
 - Inverter

- **Battery Assisted Drive**
 - Battery
 - dc/dc convertor
 - Inverter
Features of Three Types of Drives

• **Asynchronous Motor Drives:**
 Replacing D.C. motor drives, most widely utilized in urban systems. An inverter for multiple motors. Regenerative braking with bilateral power flow of inverter.

• **Synchronous Motor Drives:**
 Improved energy efficiency with field permanent magnets. One to one inverter-motor composition for synchronization.

• **Battery Assisted Drives:**
 Operation in un-electrified line sections. Limited power conditioning of regenerative braking. Sustainable operation against power outage.
Linear Metro: Direct drive with linear induction motors on board for urban underground transportation

Bogie Structure

Train of Fukuoka Municipal Subway

Photographs are copied from a brochure of Japan Underground Railway Association.
2. Regional Railway System

- Main lines are electrified with the single phase a.c. system of 15~20kV. Due to the low frequency of trains, recovery of regenerative braking energy by ground facilities is limited.
- The train with a storage battery on the vehicle can efficiently cope with this problem.
- For un-electrified lines, the Diesel hybrid drives have been introduced for vehicles and locomotives especially for luxury train.
- The hydrogen fuel cell-powered train has been developed and is about to enter commercial operation due to excellent environmental integrity in spite of restriction on the supply of alternative fuels.
Connected operation of trains improves commuter service.
Alternative Fuel Train for Regional Transportation

Fuel Cell Drive
- Fuel Cell
- Battery
- d.c./d.c. converter
- inverter
- motors

Diesel Hybrid Drive
- Diesel Engine
- Generator
- a.c./d.c. converter
- inverter
- motors
- Battery
- d.c./d.c. converter
FC module (180kW)

Power converters

Li-ion (540kW)

H₂ cylinders (H₂ : 20kg)

Motor Car

Trailer car

Composition

Motor car (Mc)	Trailer car (Tc)

Acceleration | 2.5 [km/h/s] (at startup)

Deceleration | 3.1 [km/h/s] (Max. regeneration)

Weight | 36,400[kg] | 31,000[kg]
FC module

- **PEM Type**
 - **Auxiliaries**
 - **FC unit 1**
 - **FC unit 2**

 - **Weight:** 2,590kg

 - **High-power density** FC stacks (30kW × 3series × 2units = 180kW)
 - **Decentralizing** downsized auxiliaries (Air blower etc.)
 - **Commoditizing** auxiliaries' power supply with vehicle auxiliaries’ one of 440VAC
 - **Compact cooling system** for primary system only

Main unit

- **Weight:** 2,590kg

- **Integration** of multi power converters (Main unit = Traction + BAT + Auxiliaries)
 - FC converter is **low-voltage type** (750VDC), which makes it possible to use SiC and the small-sized circuit breaker.
Comparison between three types of systems

• Battery Assisted Drives:
 Interoperability in different electric systems as well as in unelectrified line section. Absorbing regenerative braking power in regional systems.

• Diesel Hybrid Drives:

• Fuel Cell Drives:
3. Drive systems for high speed train

• With SiC power devices, the converter is reduced in size and weight, as well as transformers and motors and the cooling device can work only with running wind.

• The battery drive has also been introduced to eliminate the suffering of passengers trapped in the vehicle due to prolonged power outages.

• Replacement of on-board transformers with SiC a.c./a.c. converter is under study.

• Emergency braking for trains operating with velocity higher than 350km/h, the application of linear induction motor brake is proposed and studied.
Innovative Drive Systems for High Speed Train

- a.c. 1Φ 20-25kV
- transformer
- a.c./d.c. converter
- inverter
- battery
- d.c./d.c. converter
- inductor
- a.c./a.c. converter
- a.c./d.c. converter
- inverter

N700S JR Central

Drive System for High Speed Train Assisted by batteries

Drive System without Transformer
Examples of Trains with SiC Drives supplied in 2016-2017

totally 724 motor cars

<table>
<thead>
<tr>
<th>Operator</th>
<th>Series</th>
<th>Use</th>
<th>Line</th>
<th>SiC Type</th>
<th>Motor Type</th>
<th>Number of Motor Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>JR East</td>
<td>E235</td>
<td>Urban</td>
<td>Yamate</td>
<td>Full 2 level</td>
<td>Asynchronous</td>
<td>162</td>
</tr>
<tr>
<td>JR West</td>
<td>323</td>
<td>Urban</td>
<td>Osaka-Circle</td>
<td>Full 2 level</td>
<td>Asynchronous</td>
<td>96</td>
</tr>
<tr>
<td>JR Kyushu</td>
<td>811</td>
<td>Regional</td>
<td>Kagoshima</td>
<td>IGBT hybrid</td>
<td>Asynchronous</td>
<td>12 (a.c. supply)</td>
</tr>
<tr>
<td>Tokyo Metro</td>
<td>9000</td>
<td>Commuter</td>
<td>South-North</td>
<td>Full 2 level</td>
<td>Asynchronous</td>
<td>30</td>
</tr>
<tr>
<td>Tokyo Metro</td>
<td>1000</td>
<td>Metro</td>
<td>Ginza</td>
<td>Hybrid 2 level</td>
<td>Synchronous</td>
<td>12</td>
</tr>
<tr>
<td>Keihin Kyukou</td>
<td>1000</td>
<td>Commuter</td>
<td>Main Line</td>
<td>Full 2 level</td>
<td>Asynchronous</td>
<td>40</td>
</tr>
<tr>
<td>Keiōu</td>
<td>5000</td>
<td>Commuter</td>
<td>Main Line</td>
<td>Hybrid 2 level</td>
<td>Asynchronous</td>
<td>50 (Battery on board)</td>
</tr>
<tr>
<td>Tokyo Kyukou</td>
<td>2020</td>
<td>Commuter</td>
<td>Denen Toshi</td>
<td>Full 2 level</td>
<td>Asynchronous</td>
<td>50</td>
</tr>
</tbody>
</table>
Summary of Part 2

• With application of high power and fast operating power devices, a.c. motor drives have been widely introduced and contributed to global environment.

• The progress of Li-ion batteries has promoted their application to train drives for higher energy efficiency and better service quality.

• Fuel cell drive is going to be introduced into trains for practical operation with consolidation of fuel supply infrastructure.

• High speed train technology requires furthermore sophisticated drive systems.
Conclusion

• Due to the demand for low-carbon society and the convenience of passengers, improvements in new energy supply and drive systems are constantly being introduced and applied.

• From an industrial point of view, railway equipment are not so large in capacity but utilized with rather large quantity. Then railways also play a leading role in the application of new technologies supported by high level of public interest.

• Introduction of autonomous system management is expected to increase further the total energy efficiency on the platform of information network technology (NIT).