Ground Facilities
and
Energy-efficient & Alternative Fuel
Vehicle Drive Systems
for Urban, Regional and High Speed Train

Eisuke Masada      Tetsuo Uzuka
Railway Technical Research Institute
Tokyo
Preface:

Electrification Everywhere / Railways

• Railway electrification has a long history and its technology is well known. Here we report on the latest trends.

• Even if railways are considered environmentally friendly, railway operators are aiming carbon reduction considering social demands.

• Expanding mobility for social development, introduction of new rail systems, such as magnetic levitated railway and APM, is attempted.

• In the followings, these trends are explained from the two aspects of ground power supply facilities and on-board drive systems for trains.
Modernization of Electric Railways

Part.1 Ground Facilities
Energy Management System for Urban Network,
Energy-efficient Power Supply for High Speed
Train, Super Speed Maglev System

Eisuke MASADA    Tetsuo UZUKA
(Railway Technical Research Institute)
1. Introduction

• In order to meet the social needs for global environmental problems and the demands of passengers such as operational reliability and cost, electric power supply systems for railways have been steadily advanced by utilizing power electronics technology.

• Power supply systems have become increasingly sophisticated to cope with such requirements for environment and customer service.

• The super-speed magnetic levitation train is being introduced with a completely new type of power supply system.
2. Power Supply System for Urban Railways

• In order to utilize the regenerative braking energy effectively without accelerating train nearby, the energy storage device is needed in the power supply system or return it to the grid.

• Since all substations are connected to each other by d.c. feeders, the entire power supply system can be operated like a microgrid for the total energy efficiency of the system and the stable train operation.

• The wayside renewable energy supply could be incorporated into this grid system.
<table>
<thead>
<tr>
<th>Railway company</th>
<th>Kind of energy unit</th>
<th>Built age</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keihan kyuko</td>
<td>Flywheel</td>
<td>1987</td>
<td>1</td>
</tr>
<tr>
<td>JR West</td>
<td>Lithium ion battery</td>
<td>2006, 2018</td>
<td>2</td>
</tr>
<tr>
<td>Kobe city</td>
<td>Lithium ion battery</td>
<td>2007</td>
<td>1</td>
</tr>
<tr>
<td>Kagoshima city</td>
<td>Lithium ion battery</td>
<td>2007</td>
<td>2</td>
</tr>
<tr>
<td>Seibu</td>
<td>Supercapacitor</td>
<td>2007, 2016</td>
<td>3</td>
</tr>
<tr>
<td>Osaka metro</td>
<td>Nickel-metal hydride battery</td>
<td>2010-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Lithium ion battery</td>
<td>2013</td>
<td>1</td>
</tr>
<tr>
<td>Tobu</td>
<td>Lithium ion battery</td>
<td>2012, 2015</td>
<td>2</td>
</tr>
<tr>
<td>Tokyo metro</td>
<td>Lithium ion battery</td>
<td>2016</td>
<td>4</td>
</tr>
<tr>
<td>Keio</td>
<td>Lithium ion battery</td>
<td>2015</td>
<td>1</td>
</tr>
<tr>
<td>Tokyo monorail</td>
<td>Nickel-metal hydride battery</td>
<td>2013, 2014</td>
<td>2</td>
</tr>
<tr>
<td>Sapporo city</td>
<td>Nickel-metal hydride battery</td>
<td>2015</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lithium ion battery</td>
<td>2017</td>
<td>1</td>
</tr>
<tr>
<td>Yokohama city</td>
<td>Nickel-metal hydride battery</td>
<td>2015</td>
<td>1</td>
</tr>
<tr>
<td>JR East</td>
<td>Lithium ion battery</td>
<td>2013-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nickel-metal hydride battery</td>
<td>2018</td>
<td>1</td>
</tr>
<tr>
<td>Tama monorail</td>
<td>Lithium ion battery</td>
<td>2017</td>
<td>1</td>
</tr>
<tr>
<td>Odakyu</td>
<td>Lithium ion battery</td>
<td>2018</td>
<td>1</td>
</tr>
<tr>
<td>JR Kyushu</td>
<td>Lithium ion battery</td>
<td>2018</td>
<td>1</td>
</tr>
<tr>
<td>Nankai</td>
<td>Lithium ion battery</td>
<td>2018</td>
<td>1</td>
</tr>
</tbody>
</table>
Power Grid
3φ 6-66kv

Railway Substation

Power Grid

3φ 6-66kv

Railway Substation

Power Flow Control
Signal

Power Conditioner

Energy Storage Device

Grid Information

Stored Capacity

Voltage Current

Operation Control

Renewable Energy Supply

Energy management system for Urban Railway Network

Railway Technical Research Institute
Operational Data Sets

Power Supply System  Train Operation Diagram  Railway Line Data  Train Dynamics Data

Basic Scheme of Simulation-based Control System for Urban Network Energy Saving

Train Operation & Power Flow Simulator

Power Flow Control Logic  Vehicle Control Logic  Train Operation Management

Simulation-based Control System

Substations  Trains

Railway Technical Research Institute
Results of power flow simulation fits well with actual operation data. The simulation-based control system for an urban network is under development.
3. Power Supply System for High Speed Railways

• High-speed railway networks are steadily expanding as a means of transportation that supports the active mobility demanded by modern society.

• Since the voltage phase of supplied power from substations varies from point to point, feeders are divided into sections by region.

• Railway operators have introduced power conditioning functions at substations for power costs, carbon reduction and security of power supply to trains.
Power Conditioning in Substation

• Power conditioning devices are required for suppressing large power fluctuation to and sustaining power quality (unbalanced, harmonics) for the supplying power grid against high-speed train operations.

• The Railway static Power Conditioner (RPC) is utilized as the all-purpose conditioning equipment in Shinkansen, which also transfers power between different feeding sections to use regenerative braking effectively and to secure power supply against failures.
Power Conditioning System for High Speed Rail

Grid

SVC

STATCOM

Substation

Section Switch

RPC

Bidirectional ac/dc convertor

Bidirectional ac/dc convertor

SVC: Static Var Compensator (Thyristor Controlled Reactor)

RPC

Railway static Power Conditioner
Static Section Transfer Switch

- Medium Voltage High Current Semiconductor A.C. Switch

Thyristor Valve

Trolley Wire

Negative Wire
4. Power Supply for Super Speed Maglev Train

• The driving force of the super-speed Maglev train is all supplied from the coils of the track-side on ground, and the vehicle has only magnets for levitation.

• The power supply to Maglev trains is a variable voltage and variable frequency 3 phase a.c. system which supplies the current synchronized with the train running.

• Wireless power supply with electromagnetic induction is used for magnets and auxiliaries on board.
Basic Constitution of Superconducting Maglev System

SCM: Superconducting Magnet
L.C.: Lift & Guide Coil
P.C.: Propulsion Coil
Operation in Yamanashi Test Track
Variable Voltage Variable Frequency (VVVF) Power Supply on Ground for Maglev Train
Summary of Part 1

• Even in electric railways, highly energy efficient and reliable power supply is strongly required for the mobility of modern society.

• The power supply to urban system would be modernized by the integrated control with battery storages, as well as renewable sources.

• High speed rail needs power conditioning to the supplying grid with high power electronics equipment.

• Super speed maglev is based on the innovative power supply system.