An Overview of the Part Acceptance Process for Regulated Lithium Ion Batteries in Transportation
Outline

- Introduction
- Ground Vehicle Applications
- Maritime Propulsion
- Aviation
- Testing Standards Overview
- Summary
Introduction

- Lithium ion battery systems go through many of the same types of testing that power electronics do
 - product validation/qualification
 - hazardous voltage safety requirements
- Lithium ion batteries and systems have extra requirements because of other safety concerns
 - Thermal runaway
- This presentation focuses on the testing procedures or requirements
 - ground transportation, maritime, and aviation industries
 - Mostly for propulsion, so these can be large batteries.
 - Definition: “regulated” means that the battery or battery system has a capacity of more than 100 Wh, which requires special shipping containment and testing
Propulsion Batteries in Ground Transportation

- Passenger vehicle applications are the most mature
- Early development of consortia in the US and Europe specifically addressed the need for testing standards
 - EUCAR in Europe
 - USABC/FreedomCar in the US
 - Developed in cooperation with Sandia National Labs.
 - You can find the test manuals on the USCAR website
 - Link at the end of the presentation
- Commercial vehicle standards are less mature
 - Starting point for creating tests tend to be the passenger car standards
Propulsion Batteries for Maritime Applications

- The US Navy developed requirements last decade, mainly because Li-ion batteries were useful for small underwater vehicles
 - A good guide to the Navy battery safety program can be found in a link at the end of this presentation
 - It is a very difficult set of requirements and tests
 - Safety Data Package
 - Safety Testing
 - Safety Review
 - Approval
- Lithium Iron Phosphate chemistry is able to pass
In commercial applications, Scandinavian countries such as Norway are leading the way forward:

- Hybrid and electric ferries or excursion boats
- Risk management companies, such as DNV-GL, are developing testing standards.
- Starting point was US Navy test standards
- Li Iron Phosphate chemistry can pass
- The Flag Country has the ultimate approval
- You can find manuals for lithium battery approval for ships at a website included at the end
Hybrid Fjord Tour Boat Docked in Flam, Norway

- Diesel and/or Electric propulsion
- Li battery for limited “quiet” electric operation
- Quick dockside recharge
View from the Boat While in All Electric Propulsion – Maritime Battery Forum, Sep 2016

- Glaciers and waterfalls in the Aurlandsfjorden region
Li-ion in aviation - research

- Propulsion capable batteries for aircraft are still in the research stage
 - Studies by Boeing, NASA, and others set specific energy goals quite high—
 - 4 times more than today’s batteries
- A web resource by the National Academies Press summarizes the various studies and goals for electric propulsion (Included at end)
 - A committee of the National Academies of Sciences, Engineering and Medicine looked at various architectures
 - All electric
 - Hybrid electric — Parallel hybrid
 - — Series hybrid
 - — Series/parallel partial hybrid
 - Turboelectric — Full turboelectric
 - — Partial turboelectric
- Conclusion – partial turboelectric likely first
Image of Architectures

From: https://www.nap.edu/read/23490/chapter/7
Li-ion in aviation – in use

- There are lithium ion batteries of the “regulated” size on the Boeing 787, Airbus A350, and the F-35 fighter.
 - They are not for propulsion
 - Accepted by authorities, like the FAA, on a case-by-case basis
- The aircraft transport industry is quite concerned about lithium ion batteries as cargo
 - Recommendations and compliance for shipping go through the IATA
 - a large group of aviation industry companies
 - A good resource page for guidance material is listed at the end
An Overview of Battery Testing Types and Standards

- If you plan to have a Li-ion battery as part of your system, there is a list of the test types and standards that you could be asked to perform
 - Depends on the customer and the application
- Standards for testing have been created by well-known organizations
 - UL, NEMA, IEEE, and SAE
- The type of tests include –
 - external short circuits, abnormal charge, reverse charge, internal short circuit, and environmental testing
- There is a very good table of types and standards
 - Presentation called “Safety Li-ion management” from RECHARGE, the Advanced Rechargeable & Lithium Battery Association (website included at the end)
<table>
<thead>
<tr>
<th>Test Criteria Standard</th>
<th>UL 1642</th>
<th>UL 2054</th>
<th>UL Subject 2271</th>
<th>UL Subject 2980</th>
<th>UL 2575</th>
<th>C10.2M</th>
<th>J2464</th>
<th>IEEE 1025</th>
<th>IEEE 1725</th>
<th>BATSO 01</th>
<th>Telcordia</th>
<th>JIS C8714</th>
<th>INERIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>External short circuit</td>
<td>●</td>
</tr>
<tr>
<td>Abnormal charge</td>
<td>●</td>
</tr>
<tr>
<td>Forced discharge</td>
<td>●</td>
</tr>
<tr>
<td>Crush</td>
<td>●</td>
</tr>
<tr>
<td>Impact</td>
<td>●</td>
</tr>
<tr>
<td>Shock</td>
<td>●</td>
</tr>
<tr>
<td>Vibration</td>
<td>●</td>
</tr>
<tr>
<td>Heating</td>
<td>●</td>
</tr>
<tr>
<td>Temperature cycling</td>
<td>●</td>
</tr>
<tr>
<td>Low pressure (altitude)</td>
<td>●</td>
</tr>
<tr>
<td>Projectile</td>
<td>●</td>
</tr>
<tr>
<td>Drop</td>
<td>●</td>
</tr>
<tr>
<td>Continuous low rate charging</td>
<td>●</td>
</tr>
<tr>
<td>Molded casing heating test</td>
<td>●</td>
</tr>
<tr>
<td>Open circuit voltage</td>
<td>●</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>●</td>
</tr>
<tr>
<td>Reverse charge</td>
<td>●</td>
</tr>
<tr>
<td>Penetration</td>
<td>●</td>
</tr>
<tr>
<td>Internal short circuit</td>
<td>●</td>
</tr>
<tr>
<td>Immersion</td>
<td>●</td>
</tr>
<tr>
<td>Fire</td>
<td>●</td>
</tr>
</tbody>
</table>
Summary

- For propulsion sized lithium ion batteries ground transportation applications are the most mature
 - There are many examples of safe use in the field
 - This is mainly because of an early and earnest to develop standard tests
- Maritime applications are becoming more common in select areas
- Aviation is focused on the transport of large li-ion batteries as cargo
 - Usefulness for propulsion is in the research phase.
- Many well-known international bodies have developed testing standards
- Power electronics manufacturers will be interested in knowing about such tests if they also provide power systems that include li-ion batteries
 - Project planning needs to take this into account
Referenced Websites

- USCAR

- US NAVY

- Commercial ships/boats

- National Academy of Sciences, Engineering and Medicine Study
 - https://www.nap.edu/read/23490/chapter/7

- IATA
 - http://www.iata.org/whatwedo/cargo/dgr/Pages/lithium-batteries.aspx

- RECHARGE
Contact

- LinkedIn – Eric Schneider, Technical Specialist – Development and Application of Power Electronics, Energy Storage, and Rotating Machines
 - Send a message/question and I will get notification and respond