Solid-State-Transformer Technology Implemented Medium Voltage Input Extreme Fast Charger for EV Charging Applications

Charles Zhu, Ph. D.
Vice President,
Delta Electronics Americas Ltd.
Key Objectives of the DOE 400 kW XFC Program

- Medium-voltage-input, MVAC at 4.8 kVac or 13.2 kVac
- Solid state transformer (SST)-based 400 kW/1000 Vdc/400 Adc EV extreme fast charger
- Local energy storage systems and/or renewable energy integration
- Charging speeds of 3C, or above
- To achieve a 180 mile charge within 10 minutes

DOE Program #: DE-EE0008361
Conventional DC Fast Charger System

Efficiency: $99\% \times 99.3\% \times 95\% = 93.4\%$

Footprint: $50 \text{ sqft} + 40 \text{ sqft} + 20 \text{ sqft} = 110 \text{ sqft}$
Conventional DC Fast Charger System

- Bulky and heavy
- Fixed voltage & power
- Space consuming
- Labor intensive
- Non expandable capacity
- High initial investment

Installation site for Tesla Super Charger in US

TX Capacity

Year 1
Year 2
Year 3
Year 4

Unused
Charging load

13 kVac
480 Vac

1 MVA
Proposed Extreme Fast Charger Solution

Efficiency: 97.5% × 99% = 96.5% Increased efficiency by 3%
Footprint: 28 sqft + 10 sqft = 38 sqft Reduced footprint by 50%

MVAC

AC/DC DC/DC

400 kW

SST

Optional ESS & PV

200 ~ 1000 Vdc
400 kW

Charger

MVAC

Optional ESS & PV

200 ~ 1000 Vdc
400 kW

Proposed Extreme Fast Charger Solution
Proposed Extreme Fast Charger Solution

- Smaller footprint
- Easier installation & deployment
- ESS and renewable energy
- Less impact to grid

Conceptual SST based extreme fast charging station

- Modularized structure
- Scalable voltage/power
- Smaller footprint
- Easier installation & deployment
- ESS and renewable energy
- Less impact to grid
- Expandable capacity
- Lower initial cost
400 kW XFC Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Rating</td>
<td>400 kW</td>
</tr>
<tr>
<td>Input AC Voltage</td>
<td>4.8 kVac and 13.2 kVac, 3-Phase, line-to-line</td>
</tr>
<tr>
<td>AC Line Frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>HV Battery Voltage Range</td>
<td>200-1000 Vdc</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>400 Adc</td>
</tr>
<tr>
<td>Efficiency</td>
<td>96.5% peak</td>
</tr>
<tr>
<td>Charge Interface</td>
<td>J1772 CCS1</td>
</tr>
<tr>
<td>Operational Ambient</td>
<td>-25 to 50°C</td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
</tr>
<tr>
<td>Environmental Protection</td>
<td>NEMA 3R (outdoor)</td>
</tr>
<tr>
<td>Additional Interface</td>
<td>HVDC interface to Energy Storage System(ESS) / Renewable Energy Source</td>
</tr>
</tbody>
</table>
SST based XFC System Structure

- **3-Φ MVAC input:**
 - 4.8 kV/13.2 kV
 - iTHD < 5%, PF ≥ 0.98
 - 60 Hz ± 10%

- **SST DC output:**
 - 400 kW power
 - Interface for ESS/PV

- **Charger output:**
 - 200 ~ 1000 Vdc
 - 400 Adc max current
 - SAE J1772 charging interface CCS1
System Level Topology and Control

- Scalable structure
- Redundant operation

4.8 kVac, 3×3 cells per phase
13.2 kVac, 1×9 cells per phase

3-level Diode Neutral Point Clamped (DNPC) AC/DC
- Fewer isolation components
- Simpler system structure

- fsw multiplied by 2N. N stands for number of modules
- Better THD, smaller filter
- Lower fsw for higher η

Series input paralleled output (SIPO) structure

Filter & protection

MVAC Grid

AC/DC

DC/DC

SST

To charger

To ESS

Phase-shifted modulation

Device: 5kHz

Module: 10kHz

System: 30kHz

V1

V2

V3

VAN
Technical Challenges for SST

System
- Scalable design
- MV grid fault tolerance
- Balance for multiple cells

Power module
- High efficiency, high frequency
- Noise & dv/dt with SiC

Insulation
- Concentrated E-field
- Partial discharge

Si IGBT
- $f_{sw} < 40$ kHz
- $dv/dt < 10$ kV/μs
- 480 Vac input

SiC MOSFET
- $f_{sw} > 100$ kHz
- $dv/dt > 50$ kV/μs
- 13.2 kVac input

60 Hz
- E < 1 kV/mm

60 Hz + 200 kHz
- E > 4 kV/mm

MVAC

LVDC

A2D

LFT based

SST

2-level

Multi-level

Scalable design
MV grid fault tolerance
Balance for multiple cells

High efficiency, high frequency
Noise & dv/dt with SiC

Concentrated E-field
Partial discharge
High Voltage/High Frequency Switching

Property of SiC vs. Si Device

- Low conduction loss
- Low switching energy
High Voltage/High Frequency Switching

- Controlled EMI propagation path
- Higher CM noise immunity

SiC gate driver design

Problem w/ SiC Device

- High dv/dt and EMI noise

SiC driver w/ SiC device

- Improved switching transient
- Reduced false triggering risk
Experimental Waveforms

AC/DC stage waveforms (Line Cycle)

- Good THD and power factor at AC grid side

Input Phase Currents
Input Line Voltages

Isolation Probe attenuation is 10,000:1 (DP30-10k-LVC)

DC/DC stage waveforms (Switching Cycle)

- Soft Switching for high efficiency at high switching frequency

V gs
V ds
I Lr
V Cr
Retrofit Vehicle RESS/HVDS System

Battery Cells / Modules

Retrofit BEV Vehicle in Progress

Battery Module Configuration
• 768 Volt cells to achieve >3C charge rate
• 192 series, 4 parallel string configuration for 800 V charging

- Courtesy of DOE Program partner General Motors
Vehicle Charging Profile Analysis Result

SOC increased by 57.3% and 62.4% respectively in 10 minutes. The target is 50%.
400 kW SST XFC System Testing

- Completed full power test
- Input 13.2 kVac,
- Output 200 - 1000 Vdc, 400 kW,
- Peak efficiency 97.5%

- Courtesy of DOE Program partner NextEnergy Test Site
System Efficiency (SST + Buck Converter)
System Efficiency (SST + Buck Converter)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urms1</td>
<td>13.311 kV</td>
<td></td>
</tr>
<tr>
<td>Urms2</td>
<td>13.277 kV</td>
<td></td>
</tr>
<tr>
<td>Irms1</td>
<td>17.835 A</td>
<td></td>
</tr>
<tr>
<td>Irms2</td>
<td>17.809 A</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>402.11 kW</td>
<td></td>
</tr>
<tr>
<td>ψ3</td>
<td>409.91 kW</td>
<td></td>
</tr>
<tr>
<td>η1</td>
<td>0.9989</td>
<td></td>
</tr>
<tr>
<td>η2</td>
<td>98.095 %</td>
<td></td>
</tr>
<tr>
<td>η3</td>
<td>98.958 %</td>
<td></td>
</tr>
<tr>
<td>Ul</td>
<td>1.0498 kV</td>
<td></td>
</tr>
<tr>
<td>Ic</td>
<td>383.06 A</td>
<td></td>
</tr>
<tr>
<td>Ic</td>
<td>383.03 A</td>
<td></td>
</tr>
<tr>
<td>SST output V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SST output Ic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck Iout</td>
<td>0.4012 kA</td>
<td></td>
</tr>
<tr>
<td>Buck Pout</td>
<td>0.3979 MW</td>
<td></td>
</tr>
<tr>
<td>SST off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XFC: system off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Power Analyzer Measurement
- Yokogawa WT-1800
DCFC Vehicle Charging Test with Chevy Bolt

- Completed vehicle charging communication test

- Courtesy of DOE Program partner General Motors Bolt Vehicle
Future XFC System Application

Utility side
- AC input
- Power cell rack
- Control & DC output

SST
- Optional ESS chiller
- HMI
- 150~1000 Vdc
- 400 kW

User side
- Charging port
- 4.8 kVac/13.2 kVac

MVAC grid
- 1 kVac
A solid state transformer (SST) technology has been introduced for XFC
- Input 13.2 kVac,
- Output 200 – 1000 Vdc, 400 kW/400 Adc
- SST enabled 50% footprint reduction and reached 97.5% peak efficiency
- EMI issues has been resolved with novel gate drive design
- SiC device has been utilized in the design with soft switching technology
- Vehicle charging test has been completed
Acknowledgement to the DOE Program Partners

DOE Program #: DE-EE0008361
Thank you!