Advances Through Innovation:
Transphorm Changes the Game with Gen-IV SuperGaN™ 650V GaN Platform

Yifeng Wu, Sr. VP of Engineering
Outline

1. Overview—History and status of 600 V+ GaN products
2. Device configuration and Generation 4 SuperGaN™ design
3. Device characteristics
4. Application performance
5. Summary
Transphorm—A Leader in 600 V+ GaN Power Electronics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC</td>
<td>EPC (450 V)</td>
<td>600-650 V GaN Commercial</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>Fujitsu</td>
<td>Transphorm</td>
</tr>
<tr>
<td>GaN Systems</td>
<td>GaN Systems (TSMC)</td>
<td>Infineon/Panasonic</td>
</tr>
<tr>
<td>Infineon</td>
<td>Infineon (licensed Panasonic)</td>
<td>TSMC (GaN Sys./Navitas)</td>
</tr>
<tr>
<td>International Rectifier</td>
<td>International Rectifier</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>MicroGaN</td>
<td>MicroGaN</td>
<td>Power Integrations</td>
</tr>
<tr>
<td>Panasonic</td>
<td>Panasonic</td>
<td>650 V GaN Automotive</td>
</tr>
<tr>
<td>RFMD</td>
<td>RFMD</td>
<td>Transphorm</td>
</tr>
<tr>
<td>Toshiba</td>
<td>Toshiba</td>
<td>900 V GaN Commercial (JEDEC)</td>
</tr>
<tr>
<td>Transphorm</td>
<td>Transphorm/Fujitsu</td>
<td>Transphorm</td>
</tr>
</tbody>
</table>
Transphorm Has Shipped 500,000 GaN Parts To The Market:

Enabled total conversion capacity in field: 200 MW

Markets

High-voltage GaN technology benefits numerous markets that require reliable higher efficiency, higher performance power conversion. The highest adoption rates are projected for the following application areas:

Infrastructure and IT Power Supplies

Increases clean power output in standardized server and telecom form factors.

Consumer and Computing Adapters, Gaming Power Supplies

Improved efficiencies result in lower thermals, improved power density and lower system cost.

Broad Industrial Battery Chargers, UPS

Reduces size and weight of systems that run industrial factories, charge battery powered forklifts, electric vehicles and keep critical data accessible.

Automotive EV and Charging

Generates longer distance per charge with a lower overall system cost.
Field PPM Rates Showing Excellent Reliability

To Date: 4ppm Field Failure Rate

Transphorm GaN Field Data

Field Reliability Data Field Hours Field Reliability Data

< 2.0 5B < 19.8

Failures per Billion Hours (FIT) Parts per Million per Year (PPM)
GaN 2-chip Normally Off Implementation

Packs High Performance With High Reliability

Standard Gate Driver Examples:
- Silicon Labs
- ON Semiconductor
- Texas Instruments

Simple to Drive GaN FET

HV GaN FET

- Low R_{ON}
- Minimal miller plateau
- Fast switching
- Diode free bridge

Transphorm

Standard Gate Drivers

High Noise Immunity

Robust Gate

High Gate Drive Margin

Normally off Packaged Part
Innovative Design Enables Simplest 2-chip Normally-off GaN

- Patented innovation transforms a complex 2-chip design into a simplistic “1-chip-like” package
- Multiple components/wires were removed from previous product
- Targeting remarkable cost reduction and significant performance improvement
1. Overview—History and status of 600 V+ GaN products
2. Device configuration and Generation 4 design SuperGaN™
3. Device characteristics
4. Application performance
5. Summary
TPH Gen IV GaN Vs. Other GaN: I_{DSS} Comparison

- TPH Gen IV: 1200 V at 25°C
- 300 V higher than competition
Gen IV I_{DSS} At High Temperatures

1000 V breakdown even at higher 175°C temperature
- Breakdown at 150°C: 1050 V
- Breakdown at 175°C: 1000 V
In Circuit Test - DyRon vs. Vd Very Stable at RT & 150°C

Switching to 700 V

- Max/typical/low Ron devices tested
- Flat Dynamic $R_{DS(on)}$ to 700 V at 25°C & 150°C
Dynamic Parameters - C_{oss} & Q_{oss} vs. V_d

- **Gen III vs Gen IV (Coss)**
 - Gen III
 - Gen IV

- **Gen III vs Gen IV (Qoss)**
 - Gen III
 - Gen IV

- Reduced C_{oss} & Q_{oss}
Verified Switching Performance: Gen IV

- Gen IV: Higher speed but much lower turn-off ringing
 => Improved stability
- Turn-on spike can be controlled (next slide)
Switching Performance: Speed Controllability

- Switching speed controllable with Vg (or Rg)
Outline

1. Overview—History and status of 600V+ GaN products
2. Device configuration and Generation 4 design SuperGaN™
3. Device characteristics
4. Application performance
5. Summary
Performance Benefit, Gen IV vs. Gen III

Synchronous Boost Converter: 240 V:400 V @ 100 kHz

• Gen IV further improves efficiency:
 ✓ 0.2-0.4% improvement at low load & >0.1% at mid to high load.
Performance Benefit at 200 and 300 kHz

Synchronous Boost Converter: 240 V:400 V

- All test were in hard-switching (Expect higher Eff. in soft switching)
 - [200kHz] Peak efficiency: Gen IV 98.70% => Best-in-class
 - [300kHz] Peak efficiency: Gen IV 98.21% => Best-in-class
Performance Compared to SiC MOSFET (30mΩ)

Synchronous Boost Converter: 240 V:400 V @ 100 kHz

Half-bridge Boost Converter

[Gate drive] GaN: 0-12V, $R_G=30$

SiC: 0-18V, $R_G=0$

GaN: Efficiency improvement >0.2% from 3 kW-7.2 kW
✓ The only GaN product to deliver 7.3 kW (100kHz)
Best-in-Class Totem-pole PFC Performance

Highest Efficiency and Power Level By Discrete GaN: 230 Vrms:390 Vdc @ 65 kHz

- Same operation voltages & frequency in the same test setup.
- All auxiliary power & fan consumption included
- Peak efficiency: >99.0% vs. <98.9% (0.17% higher)
- Max power: 4.13kW vs. 2.50kW (65% higher)
Transphorm – Technology Price Reduction Y-O-Y

Percentage Reduction

Year

Gen I
Gen II
Gen III
Gen IV
Summary

1. Transphorm has a proven success track record with 2-chip normally-off 600V+ GaN products based on a robust technology.

2. Continued innovation leads to Generation-4 devices transforming the 2-chip design into a 1-chip-like simplicity.

3. While Gen II/Gen III are matured and qualified as automotive grade (AEC Q101), Gen IV design is being introduced for commercial / industrial applications.

4. The simplicity and high-performance Gen IV product will accelerate GaN adoption in the power electronics market.
Thank you!