How GaN helps power supplies achieve extraordinary levels of efficiency

Eric Persson, Infineon Technologies

MARCH 17-21 | ANAHEIM, CA.
ANAHEIM CONVENTION CENTER

APEC

Application map for Si, SiC, GaN

What is GaN – the technology

- GaN is a "wide-bandgap" semiconductor material that can be fabricated into high-performance power transistors
- Infineon makes devices by epitaxially growing layers of GaN (with other elements) onto Silicon substrates

CoolGaN™ die and package example

Note substrate is connected to source potential:

How is CoolGaN™ better performing than Si or SiC?

The 3 key benefits of GaN transistors:

- 1. GaN transistors conduct in the reverse direction (third quadrant) like a diode, but there is **zero** reverse-recovery charge
 - This is a huge benefit that enables hard-switching with low-loss and low EMI
- 2. GaN transistor capacitance/charge is much smaller than comparable Si or SiC transistor
 - Both gate charge and output charge are lower than any competing technology

 enabling fast, low-loss switching
- 3. Because of low charge and no minority-carriers, GaN switching speed can be <u>very</u> fast (single-digit ns range)
 - Especially at turn-off, the channel current can be cut-off in a few ns making turnoff losses extremely low

Comparing 600 V transistor key parameters

Parameter	CoolGaN (IGT60R070)	CoolMOS (CFD7)	SiC (SCT3060AL)	Comments
$R_{DS(on),typ}$ (m Ω)	55	57	60	Very close typical room-temp Rds(on) ±5%
Q _{rr,typ} (nC)	0	570	55	CoolMOS max >1000
Q _{OSS,typ} @ 400 V (nC)	41	400	~60	SiC estimated from chart
E _{OSS,typ} @ 400 V (μJ)	6	8	9	Relatively small differences!
t _r /t _f typ (ns)	7/10	23/6	37/21	SiC has large internal R _G
I _{D,pulse} (A)	60	129	97	@25°C. GaN is 35 A @ T _C = 125°C
R _{thJC (MAX)} °C/W	1.0	0.8	0.91	Not significant differences

- Note: Rohm SiC MOSFET is rated at 650 V, GaN and Si are rated at 600 V
- CoolMOS t_f looks deceptively fast because it does not include the time spent 0-10% V_{DS} (measurement is from 10-90%)

Why are these key transistor characteristics?

- What makes these so important?
- Consider the main loss mechanisms in power transistors:
- Conduction loss: nearly the same for these 3 examples
- Switching loss dominated by 3 factors:
 - 1. "crossover" loss during the switching interval, both I_D and V_{DS} are simultaneously large creating high peak power loss
 - GaN has fastest turn-on time = lowest loss
 - 2. E_{OSS} the C_{OSS} energy is dissipated during hard turn-on
 - GaN is lowest, but not by much compared to CoolMOS or SiC
 - 3. Reverse-recovery loss: in hard-switched half-bridge topology this can be a **huge** loss for superjunction
 - SiC is 10X better than CoolMOS, but GaN is far better than either

Benefit of GaN in single-ended topologies

Body-diode performance does not matter – so benefit is limited:

- Current flow is unipolar in each case
 - So body diode never conducts its performance is irrelevant
- CoolMOS is typically the best choice for these applications
 - Any small improvement in switching loss using GaN is likely not worth the additional cost

Circuits where GaN does provide significant benefit

- Topologies based on the half-bridge:
 - Totem-pole PFC
 - LLC converter
 - Phase-shifted bridge converter
 - Active-clamp flyback converter
 - Inverters

- V_{BUS} upper I_L lower V_{SW}
- The benefit provided by GaN depends on 2 key factors:
- Control strategy hard or soft-switching?
 - For all hard-switching, GaN is clear choice due to zero Qrr
 - For resonant/soft switching, CoolMOS for <250 kHz, GaN >250 kHz
- 2. Operating frequency:
 - For Hard-switching, losses ∞ frequency, so lower frequency is used for maximum efficiency
 - For soft-switching, advantage of GaN is at >250 kHz

3rd quadrant conduction characteristic

HEMT turns back ON when drain goes below G, S

4 possible half-bridge commutation conditions

Minimizing 3rd quadrant losses

- Power dissipated in 3^{rd} quadrant "diode mode" proportional to V_{SD} x I_{SD} x time x frequency
- \bullet Minimize V_{SD} by using only as much negative gate drive as necessary to prevent shoot-through
- Minimize time spent in diode mode:
 - Use shortest deadtime possible, or
 - Employ adaptive deadtime optimization
 - Look-up table or calculate pulse-by-pulse

Example 20 A hard-switching waveforms

The Results:

- 2.5 kW GaN Reference Design
- CCM Full-Bridge PFC operating @ 65 kHz
- >99% efficiency over most of the load range

GaN 2.5 kW PFC measured efficiency

GaN 2.5 kW PFC loss breakdown

- At 1000 W output power:
 - GaN conduction loss 1.5W
 - GaN switching loss 1.1 W
 - Coolmos conduction loss 0.7 W
 - EMI filter, cap ripple loss 0.5 W
 - PFC inductor total loss 2.0 W
 - Bias supply + control circuit 1.3 W
 - (fan not running at this load)
 - Total losses ~7.1 W

Example high-density resonant application

Main Specifications:

Input: 350-400 V DC, 385 V nominal

Output: 52 V @ 70 A, 3600 W

Power density: 160 W/in³

LLC resonant frequency: 350 kHz

Performance:

Efficiency versus output load

Components Used:

CoolGaN: 70 mΩ IGT60R070D1

 \rightarrow SR: 2.6 m Ω Optimos BSC026N08NS5

HV Driver: 1EDI20N12AF

LV Driver: 2EDN7524R

Controller: ICE2HS01G

Aux Supply: ICE2QR2280Z

Demoboard available

CoolGaN™ and EiceDRIVER™ in production now

CoolGaN™

the new power paradigm: ultimate efficiency and reliability

- The most reliable GaN solution delivering highest performance amongst all available GaN devices
- Manufacturing expertise throughout the entire supply chain
- Global application design support
- > Broad portfolio including drivers
- > Volume capability
- Attractive price projection

Summary

- 3 key features of GaN transistors enable high performance:
 - Zero reverse-recovery charge
 - Lower charge than competing technologies
 - Capable of faster switching
- These features are of particular benefit to half-bridge topologies
 - Lowest loss in hard-switching applications
 - Lowest rms current in soft-switching and resonant applications
- CoolGaN can be driven by off-the-shelf gate drivers
- In production and available now
- (See production power supply example in session IS16.5)