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Application map for Si, SiC, GaN
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What is GaN – the technology
• GaN is a “wide-bandgap” semiconductor material that can be 

fabricated into high-performance power transistors

• Infineon makes devices by epitaxially growing layers of GaN
(with other elements) onto Silicon substrates

Transition Layers
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Cross-section view of 600 V Lateral Hybrid Drain Gate Injection Transistor.

This is an enhancement-mode (normally-off) device
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CoolGaN™ die and package example
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Note substrate is connected to source potential:
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How is CoolGaN™ better performing than Si or SiC?

The 3 key benefits of GaN transistors:

1. GaN transistors conduct in the reverse direction (third quadrant) like 
a diode, but there is zero reverse-recovery charge
• This is a huge benefit that enables hard-switching with low-loss and low EMI

2. GaN transistor capacitance/charge is much smaller than comparable 
Si or SiC transistor
• Both gate charge and output charge are lower than any competing technology 

– enabling fast, low-loss switching

3. Because of low charge and no minority-carriers, GaN switching speed 
can be very fast (single-digit ns range)
• Especially at turn-off, the channel current can be cut-off in a few ns making 

turnoff losses extremely low
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Comparing 600 V transistor key parameters

Parameter CoolGaN
(IGT60R070)

CoolMOS
(CFD7)

SiC
(SCT3060AL)

Comments

RDS(on),typ (mΩ) 55 57 60 Very close typical room-temp Rds(on) ±5%

Qrr,typ (nC) 0 570 55 CoolMOS max >1000

QOSS,typ

@ 400 V (nC)
41 400 ~60 SiC estimated from chart

EOSS,typ

@ 400 V (µJ)
6 8 9 Relatively small differences!

tr/tf typ (ns) 7/10 23/6 37/21 SiC has large internal RG

ID,pulse (A) 60 129 97 @25°C. GaN is 35 A @ TC = 125°C

RthJC (MAX)°C/W 1.0 0.8 0.91 Not significant differences

› Note: Rohm SiC MOSFET is rated at 650 V, GaN and Si are rated at 600 V

› CoolMOS tf looks deceptively fast because it does not include the time spent 0-10% VDS (measurement is from 10-90%)
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Why are these key transistor characteristics?
• What makes these so important?

• Consider the main loss mechanisms in power transistors:

• Conduction loss: nearly the same for these 3 examples

• Switching loss – dominated by 3 factors:
1. “crossover” loss – during the switching interval, both ID and VDS are 

simultaneously large creating high peak power loss
• GaN has fastest turn-on time = lowest loss

2. EOSS – the COSS energy is dissipated during hard turn-on
• GaN is lowest, but not by much compared to CoolMOS or SiC

3. Reverse-recovery loss: in hard-switched half-bridge topology
this can be a huge loss for superjunction
• SiC is 10X better than CoolMOS, but GaN is far better than either
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Benefit of GaN in single-ended topologies
• Body-diode performance does not matter – so benefit is limited:

• Current flow is unipolar in each case
• So body diode never conducts – its performance is irrelevant

• CoolMOS is typically the best choice for these applications
• Any small improvement in switching loss using GaN is likely not worth the 

additional cost
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Circuits where GaN does provide significant benefit

• Topologies based on the half-bridge:
• Totem-pole PFC

• LLC converter

• Phase-shifted bridge converter

• Active-clamp flyback converter

• Inverters

• The benefit provided by GaN depends on 2 key factors:

1. Control strategy – hard or soft-switching?
• For all hard-switching, GaN is clear choice due to zero Qrr

• For resonant/soft switching, CoolMOS for <250 kHz, GaN >250 kHz

2. Operating frequency:
• For Hard-switching, losses  frequency, so lower frequency is used for maximum 

efficiency

• For soft-switching, advantage of GaN is at >250 kHz
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3rd quadrant conduction characteristic
• HEMT turns back ON when drain goes below G, S

Tj = 25°C Tj = 125°C
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4 possible half-bridge commutation conditions
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Minimizing 3rd quadrant losses
• Power dissipated in 3rd quadrant “diode mode” proportional 

to VSD x ISD x time x frequency

• Minimize VSD by using only as much negative gate drive as 
necessary to prevent shoot-through

• Minimize time spent in diode mode:

• Use shortest deadtime possible, or

• Employ adaptive deadtime optimization

• Look-up table or calculate pulse-by-pulse
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Example 20 A hard-switching waveforms

20
ns/div

VGS 2 V/div

VDS 100 V/div

IL 10 A/div

IDS10 A/div
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The Results:

• 2.5 kW GaN Reference Design

• CCM Full-Bridge PFC operating @ 65 kHz

• >99% efficiency over most of the load range
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GaN 2.5 kW PFC measured efficiency
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GaN 2.5 kW PFC loss breakdown
• At 1000 W output power:

• GaN conduction loss 1.5W

• GaN switching loss 1.1 W

• Coolmos conduction loss 0.7 W

• EMI filter, cap ripple loss 0.5 W

• PFC inductor total loss 2.0 W

• Bias supply + control circuit 1.3 W

• (fan not running at this load)

• Total losses ~7.1 W
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Example high-density resonant application

Demoboard available

Main Specifications: Components Used:

› Input: 350-400 V DC, 385 V nominal

› Output: 52 V @ 70 A, 3600 W

› Power density: 160 W/in3

› LLC resonant frequency: 350 kHz

› CoolGaN: 70 mΩ IGT60R070D1

› SR: 2.6 mΩ Optimos BSC026N08NS5

› HV Driver: 1EDI20N12AF

› LV Driver: 2EDN7524R

› Controller: ICE2HS01G

› Aux Supply: ICE2QR2280ZPerformance:
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CoolGaN™ and EiceDRIVER™ in production now

the new power paradigm:
ultimate efficiency and reliability 

› The most reliable GaN solution delivering 
highest performance amongst all available 
GaN devices

› Manufacturing expertise throughout the 
entire supply chain

› Global application design support

› Broad portfolio including drivers

› Volume capability

› Attractive price projection



Summary

• 3 key features of GaN transistors enable high performance:

• Zero reverse-recovery charge

• Lower charge than competing technologies

• Capable of faster switching

• These features are of particular benefit to half-bridge topologies

• Lowest loss in hard-switching applications

• Lowest rms current in soft-switching and resonant applications

• CoolGaN can be driven by off-the-shelf gate drivers

• In production and available now

• (See production power supply example in session IS16.5)
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