

Avalanche and Short-Circuit Robustness of High Voltage SiC DMOSFETs

Ranbir Singh, Siddarth Sundaresan GeneSiC Semiconductor Inc.

SiC MOSFET Design Considerations

- Low Drain-Source Resistance, RDS, on
- Low Gate Charge, Input and Output Capacitances
- Robust Design for High Avalanche Ruggedness
- Low conduction loss at high temperatures
- Intrinsic diode with low reverse recovery charge
- Low Costs at high

Standard DMOSFETs for highly uniform production and robust and reliable performance

Due to low channel mobility, MOSFET design points are constrained

- Small Channel Length => Needs low Electric Field at Oxide => Smaller JFET Length => High Rdson
- Under Short Circuit conditions, High Electric Field at Oxides Observed
- Different Layout schemes can be employed to trade-off Rdson/Short Circuit/Avalanche parameters

Leading 4000 V/40 mΩ MOSFETs produced

- 4000 V/40
 mΩ MOSFETs
 fabricated
 on 150 mm
 wafers
- Chip Size =
 8.9 mm x
 4.82 mm

R_{DS,ON} for various designs

Rds(on), Fixed Lch

JFET Spacing, a.u.

- R_{DS,ON} reduces with increasing JFET spacing
- Higher JFET doping has clear impact in reducing RDS,ON

Rds(on), Fixed JFET Spacing

Lch, a.u.

- R_{DS,ON} increases with increasing L_{ch}
- Higher variation in R_{DS,ON} observed in devices with low JFET doping

Leakage current (I_{DSS}) for various device designs

IDSS at Vds=2400 V, fixed Lch

JFET Spacing, a.u.

- No significant impact of JFET Doping on IDSS
- Median IDSS is higher for wider JFET spacing, for devices with higher JFET doping

IDSS at Vds=2400 V, fixed JFET Spacing

Lch, a.u.

- Median IDSS values are < 30 nA at V_{DS} = 2400 V
- No significant impact of L_{CH} on I_{DSS}

Gate leakage current (I_{GSS}) for various device designs

IGSS at Vg = 20 V, Fixed Lch

JFET space, a.u.

- Median I_{GSS} values < I nA for all designs
- No impact of JFET doping on gate leakage current

IGSS at Vg=20 V, fixed JFET spacing

Channel Length, a.u.

Very slight statistical decrease of IGSS observed for longer channel DMOSFETs

Threshold Voltage (V_{TH}) for different device designs

Vth at Id = 5 mA, Fixed Lch

JFET space, a.u.

- No impact of JFET Doping on V_{th}
- V_{th} is only weakly dependent on the JFET Spacing

Vth at ld = 5 mA, Fixed JFET Spacing

Channel Length, a.u.

- Clear dependence of Vth on MOS channel length is observed
- Vth reduction at lower channel lengths is due to the DIBL effect

Double Pulse switching

charactarization

• VDS fall time = 30 ns achieved for switching at 1800 V and 6 A, with +20 V drive voltage and RG,ext = 10 Ω

Double Pulse switching characterization

VDS rise time = 30 ns achieved for switching at 1800 V and 6 A, with -3.3 V
 Gate Drive Voltage

Negative Drain bias characteristics

- The negative drain bias (synchronous rectifier mode) performance of the DMOSFET at 25°C and 150°C is shown
- Depending on the magnitude of the gate bias and the junction temperature, the device operates in either purely bipolar mode, purely unipolar mode, or in a mixed-mode.

Avalanche robustness of 4600 V

DMOSFETS
Short-Circuit and Unclamped Inductive

Switching (UIS) tests are widely used to define the SOA limits of power devices

Avalanche ruggedness of a power device is determined by its ability to dissipate avalanche energy (EAV) without
 tatastrophic device failure

 Both single-pulse and repetitive avalanche ratings are important for ultra-fast SiC power MOSFETs, since high voltage overshoots can be generated due to high dl/dt during device turnoff

 An avalanche rugged device enables snubber-less converter design, leading to drastic reduction in cost, # of components and converter size

 Automotive applications such as anti-lock braking systems and engine control units require power devices to dissipate more

12 of 21

Single pulse avalanche energy

- SiC MOSFET successfully conducts a single-pulse avalanche energy (EAS) of 1.07 J (14.1 J/cm² normalized to the total chip size), at a peak drain current of 5.5 A, and drain voltage of 5100 V.
- An EAS of 14.1 J/cm² is among the highest ever recorded for a SiC MOSFET.

Stability of electrical characteristics after repetitive avalanche stress

- 200 mJ, I 000 cycle repetitive Avalanche Tests
- Minor degradation of Drain Leakage current
- No degradation (not shown) of output, transfer and body diode characteristics as well

Short-Circuit analysis

- Many Applications demand Short circuit capability for certain period of time (5-10 μ sec), the MOSFET should survive application of BUS voltage at near-full current
- Particularly challenging for SiC MOSFETs because short-channel makes output conductance poor (Saturation current increases with Drain Bias)
- Sophisticated behavioral models developed by GeneSiC to estimate energy deposited into the device for various short circuit times

Impact of channel length and JFET parameters on short circuit times

- Increasing Channel length, and other parameters improves Saturation characteristics of MOSFET, which limits Drain Current and hence longer Tsc
- However, RDS penalty ensues

Impact of gate bias on short circuit failure

- A good solution is limiting the Gate Drive Voltage to 15 or 16V instead of 20V
- Short Circuit Times can be enhanced by reduced Gate Biases

Impact of short circuit on device characteristics

- Not much degradation of MOSFETs after short circuit pulses applied
- I 000 cycle tests of 6usec pulses show no significant degradation of MOSFET characteristics (not shown)

GeneSiC's SiC MOSFET Roadmap

TO247-41

Rated Blocking Voltage (V)	R _{DS(ON)} (mΩ)	Maximum Continuous Current Rating	TO247-3L	TO247-4L	TO-263 / D2PAK	Bare Chips
1200	350 m Ω	6 A	GR350MT12D	GR350MT12K	GR350MT12J	
	160 mΩ	20 A	GRI60MTI2D	GRI60MTI2K	GRI60MTI2J	
	75 m Ω	36 A	GR75MT12D	GR75MT12K	GR75MT12J	GR75MT12- CAL
	40 m Ω	62 A	GR40MTI2D	GR40MT12K	GR40MT12J	
	30 m Ω	80 A		GR30MT12K	GR30MT12J	GR30MT12- CAL
	20 m Ω	92 A		GR20MT12K		GR20MT12- CAL
1700	1000 mΩ	6 A	GRI000MTI7 D		GRI000MTI7J	
	45 m Ω	75 A		GR45MT17K		GR45MT17- CAL
	20 m Ω	92 A		GR20MT17K		GR20MT17- CAL
	1000 mΩ	IA			GR I 000MT33J	
	350 m Ω	6 A			GR350MT33J	
3300						GR80MT33-

TO247-21

BE IN YOUR ELEMENT

19 of 21

Conclusions

- Well-rounded SiC MOSFET design that optimizes performance, robustness and reliability produced
- Design Parameters correlated with onresistance, short circuit and avalanche characteristics
- GeneSiC ready to sample 3300 V/40 mOhm SiC MOSFETs to select US-based partners
- AEC-QIOI qualified parts available through Industry's leading distributors for 20 of

Thanks for Your Support!

