

SiC Power Device Reliability Presented at APEC 2019

Donald A. Gajewski, Daniel J. Lichtenwalner, Edward VanBrunt, Shadi Sabri, Brett Hull, Scott Allen, and John W. Palmour March 20, 2019

SiC Commercial Market

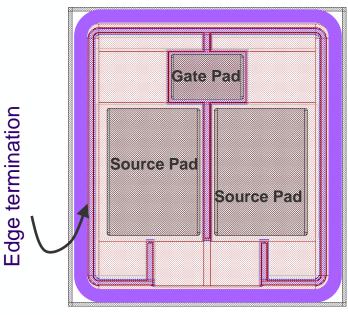
- Revenue > \$250M worldwide in 2017
- Available market ~ \$5B in 2022
- Trillions of fielded device hours to date
- Commercially released Schottky diodes, MOSFETs, and power modules
- Thousands of customers servicing many major markets
- Broad product portfolio
 - Voltage and current ratings
 - Package types
 - Die sizes

Advantages of SiC

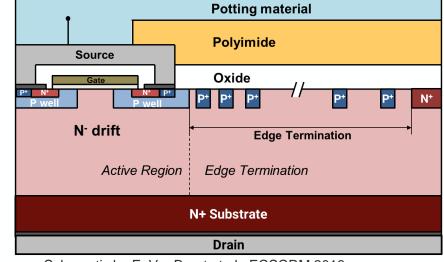
- Wide bandgap -> high voltage capability: >10 kV
- Low switching losses

SiC Device Reliability: Excellent and Continually Improving

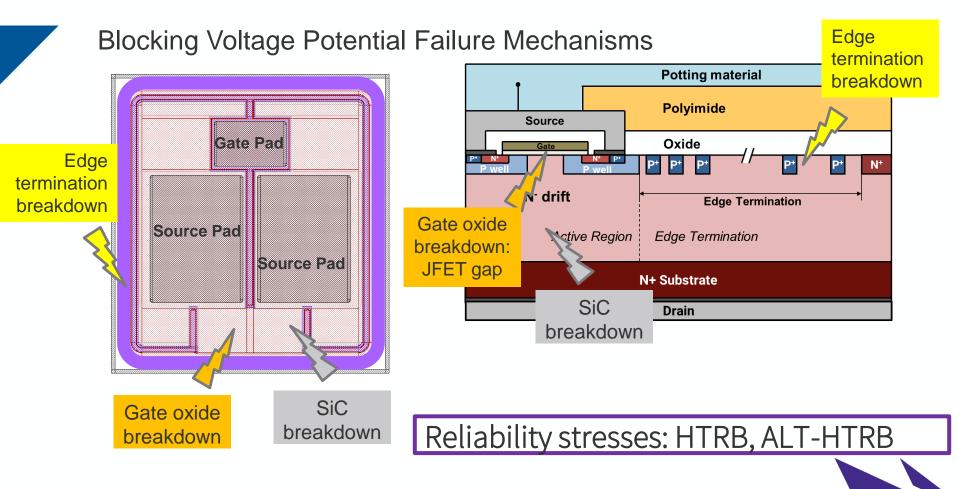
- Substrate quality
- Epitaxial growth
- Wafer processing


SiC Device Reliability Features Needed for Typical Applications

- Blocking voltage
- Gate oxide electric field
- Humid environments
- Threshold voltage stability
- On-resistance stability (3rd quadrant operation)
- Terrestrial neutron irradiation (high altitudes)

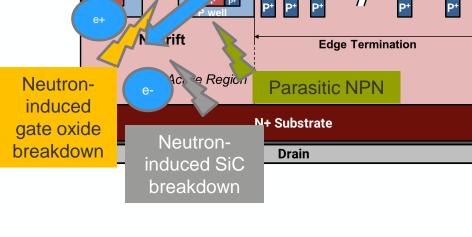

Device salient features and potential failure mechanisms

SiC MOSFET Salient Features / Critical Components



Drain is the backside of the chip

Schematic by E. VanBrunt et al., ECSCRM 2018

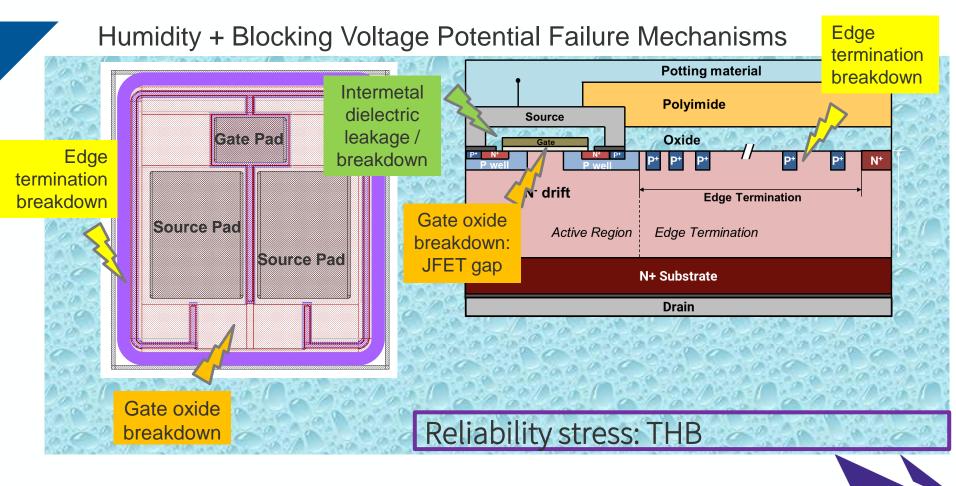

- SiC epitaxial layer: defects, thickness, doping
- MOS channel: Inversion-layer mobility, gate dielectric
- Edge termination
- Implantation / doping
- Ohmic contacts

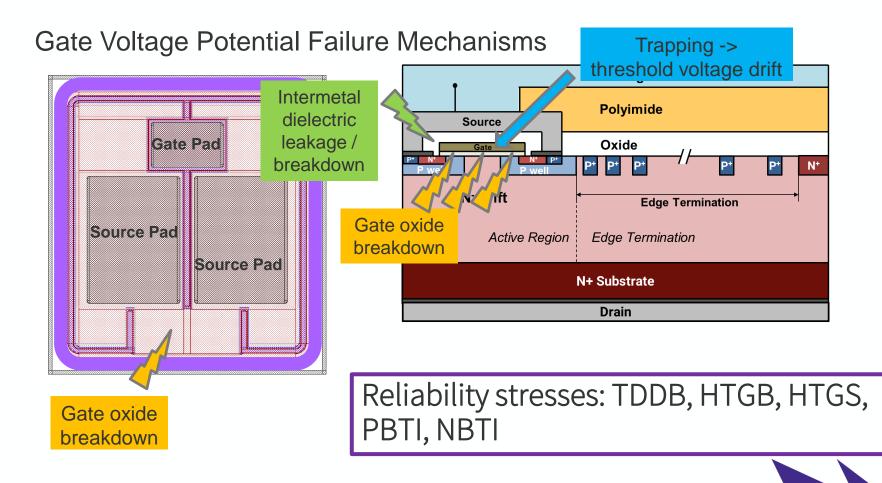
Terrestrial Neutrons Potential Failure Mechanisms

- Neutrons are attenuated by atmospheric gases, so there are more neutrons at higher elevations
- Neutrons collide with lattice atoms ->
 - Atoms recoil and/or
 - Protons and/or neutrons can be emitted
- Charge spikes along these trajectories
- Ionization trails ~ micrometers long: comparable to epilayer thickness
- Current transients
 - Parasitic bipolar turn-on -> burn-out
 - Charge accumulation -> gate oxide failure

Reliability stress: Neutron-irradiated HTRB

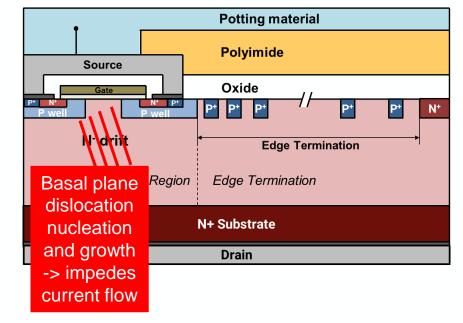
Source

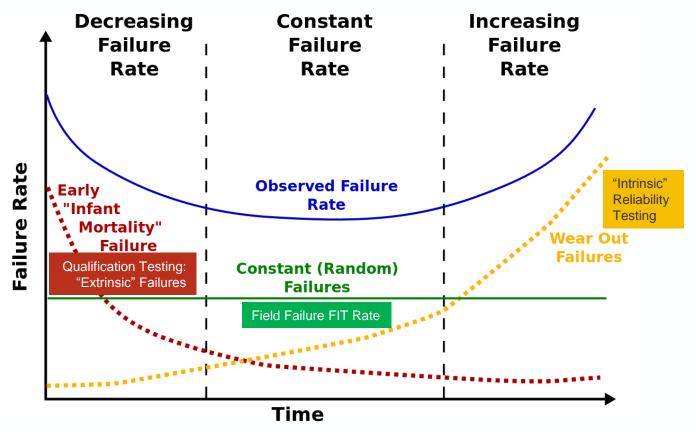

n


N⁺

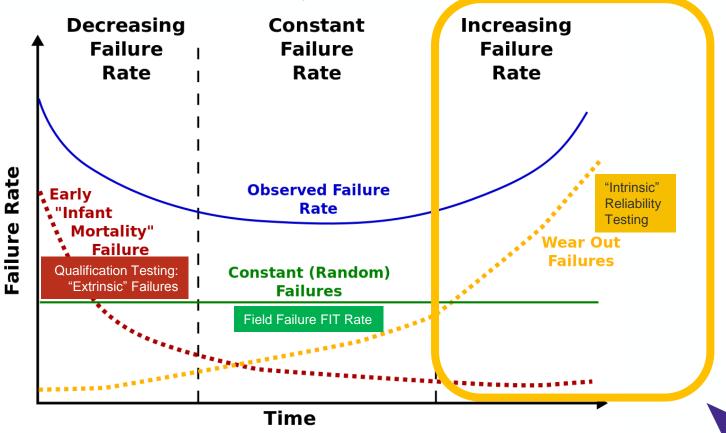
g material

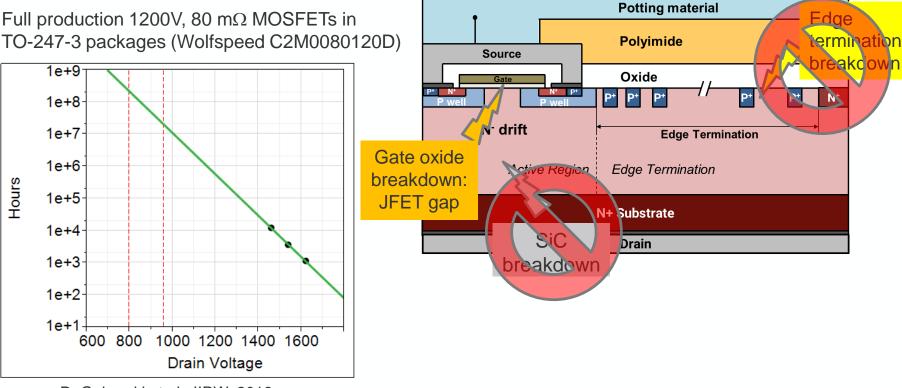
Polyimide


Oxide

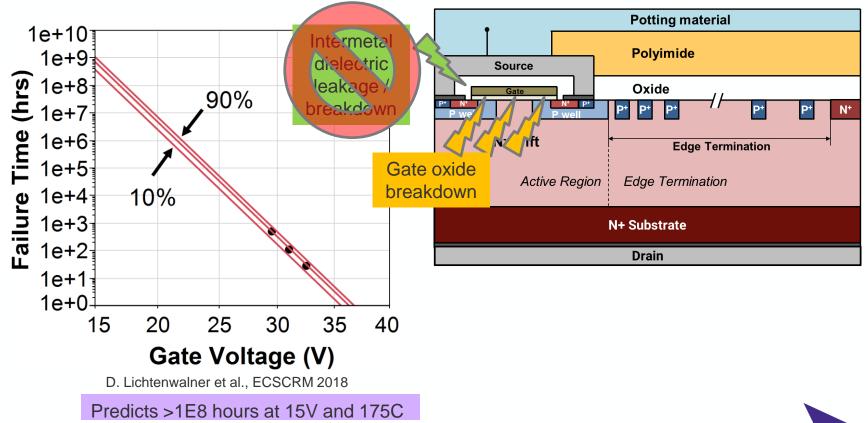

3rd Quadrant Operation Potential Failure Mechanism

Reliability stress: Body diode HTOL

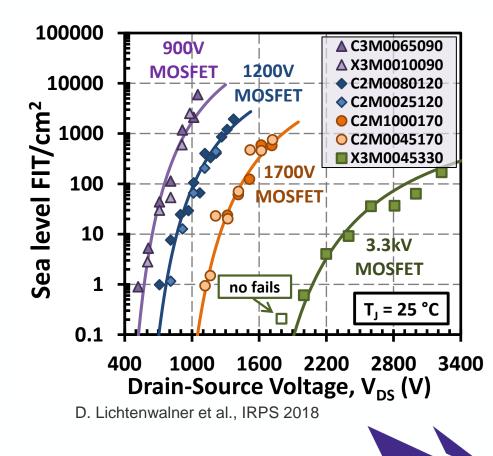

Reliability Overview – "Bathtub Curve"

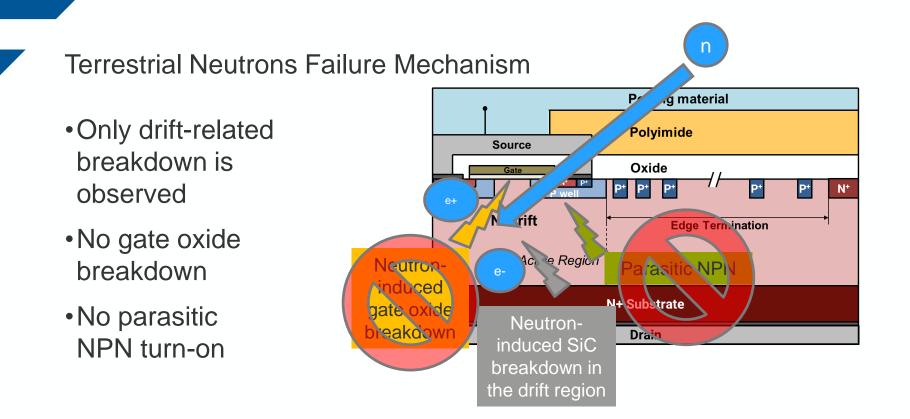

Wear-out mechanisms & intrinsic reliability

Wear-out / Intrinsic Reliability



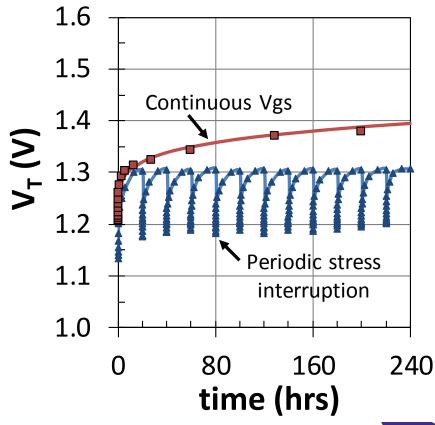
Accelerated life test high temperature reverse bias (ALT-HTRB)

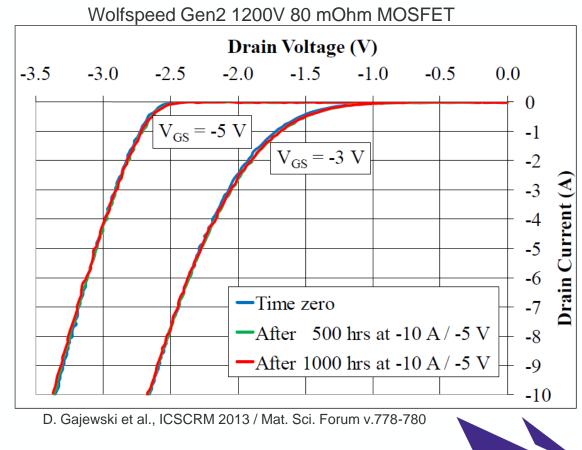

D. Gajewski et al., IIRW, 2016


Time-Dependent Dielectric Breakdown (TDDB)

Terrestrial Neutrons

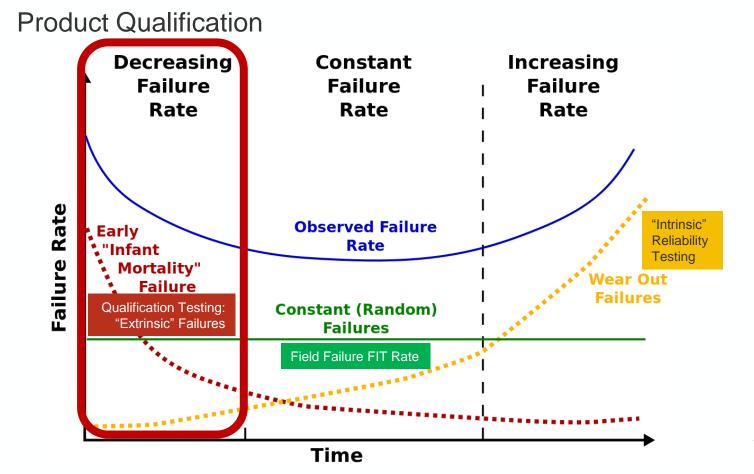
- Wolfspeed SiC MOSFET FIT rates: scaling by active area
- Failure rate increases proportionally with device area
- Failure rate decreases as voltage rating increases
- FIT/cm² vs V_{DS} for Wolfspeed MOSFETs 900V 65 mohm 900V 10 mohm 1200V 80 mohm 1200V 25 mohm 1700V 1000 mohm 1700V 45 mohm 3.3kV 45 mohm




Threshold Voltage Stability / BTI Relaxation Effects

- Threshold voltage drift is accelerated with gate voltage and temperature
- ΔV_T(t) is less for periodically interrupted gate stress compared to continuous gate stress – relaxation effect
- Interrupted stress more closely represents real switching applications and is therefore more meaningful

Body Diode


- HTOL stress in 3rd quadrant mode
- Body diode and MOSFET VF values measured pre/post stress – negligible parametric drift

THB

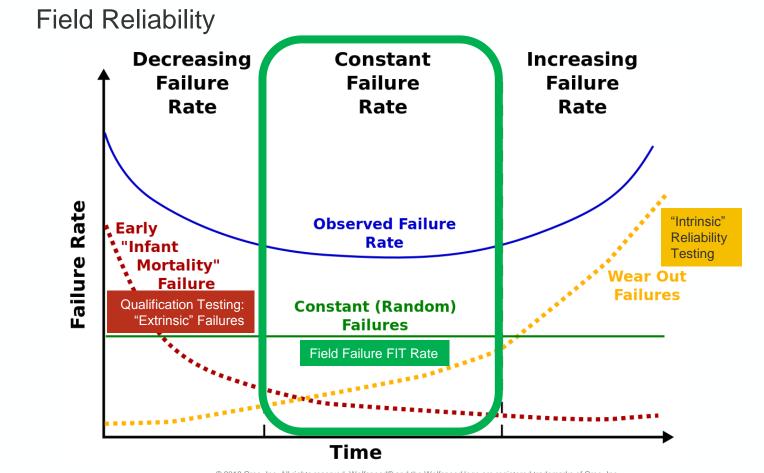
- THB is a standard qualification test in all industry standard guidelines, but AEC-Q101 calls out THB stressing only up to 100 V
- In response to showing reliable performance under humid conditions, Wolfspeed has developed the "THB-80" test:
- 85 °C and 85% RH at 80% of rated blocking voltage
- Recently released Wolfspeed E-Series :
 - Gen3 900 V MOSFETs
 - Gen4 1200 V Schottky diodes
 - Both have passed THB-80 qualification testing for 1000 hours with no visible evidence of corrosion

Product qualification

^{© 2018} Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.

Typical Product Qualification

Stress	Abrv	Sample Size Per Lot	# of Lots	Reference (current revision)	Additional Requirements	Accept on # Failed
High Temperature Reverse Bias	HTRB	77	3	MIL-STD-750-1 M1038 Method A	1000 hours at Vmax and Tcmax	0
High Temperature Gate Bias	HTGB	77 each Vgs>0 and Vgs<0	3	JESD22 A-108	1000 hours at VGSmax and VGSmin and Tcmax	0
Temperature Cycling	тс	77	3	JESD22 A-104	1000 cycles Ta_max/Ta_min	0
Unbiased Highly Accelerated Stress Test	UHAST	77	3	JESD22 A-118	96 hours at 130 °C and 85% RH	0
High Humidity High Temp. Reverse Bias	H3TRB	77	3	JESD22 A-101	1000 hours at 85 °C, 85% RH with device reverse biased to 100 V	0
Intermittent Operational Life	IOL	77	3	MIL-STD-750 Method 1037	6000 cycles, 5 minutes on / 5 minutes off, devices powered to ensure DTJ ≥ 100 °C	0
Destructive Physical Analysis	DPA	2	3	AEC-Q101-004 Section 4	Random sample of parts that have successfully completed H3TRB and TC	0


Recent Product Qualifications of Note

- Wolfspeed E-series full 3x77 automotive AEC-Q101 plus THB-80 for EV market
 - Gen3 900V SiC MOSFETs
- Gen4 1200V SiC Diodes
- Wolfspeed Gen3 1200 V SiC MOSFETs
- Wolfspeed Gen3 3.3 kV and 10 kV SiC MOSFETs
- First all-SiC Wolfspeed 1.2 kV power module (Gen2 MOSFET and Gen5 Schottky diode)

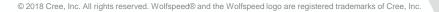
Field reliability

Wolfspeed Power Field Reliability

Technology	Fielded Device Hours (Billions)*	FIT Rate (valid field failures per billion device hours)**
CSDxxx060 Diode	1203	0.1
C2Dxxx120 Diode	511	0.6
C3Dxxx060 Diode	2919	0.06
C4Dxxx120 Diode	708	0.2
C2M MOSFET	63	3.7
C3M MOSFET	11	4.1

- *Calculated today's date minus confirmed ship date minus 90 days (allowing for time to put into service) * 12 hours per day
- **Calculated as: 2 times the number of valid field failures (excludes engineering evaluations, as-received visual defect escapes or issues, as-received test escapes, packaging and assembly quality issues) divided by fielded device hours; includes an additional factor for statistical confidence margin

- SiC power devices have some unique reliability considerations in addition to Si power devices
- SiC failure mechanisms have been identified and testing methods have been developed to characterize them effectively
- Successful product qualifications and field reliability show that the reliability science is paying off, and SiC is ready for large volume manufacturing for high reliability applications



Extra Slides

Wear-out mechanisms & intrinsic reliability

THB

Wear-out mechanisms & intrinsic reliability

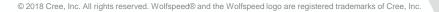
Body Diode

Threshold Voltage Stability (PBTI or NBTI)

- PBTI (NBTI) = Positive (Negative) Bias Temperature Instability: threshold voltage shift (ΔV_T) with time can change the device on-state and/or blocking characteristics
- ΔV_T relates to interface & oxide traps [1,2] (filling/emptying/creation): $\Delta V_T = q^*(\Delta N_{ox} + \Delta N_{IT})^*[(q^*T_{ox})/(K_{ox}^*\epsilon_o)]$
- ΔV_T of Si MOSFETs depends on MOS gate <u>electric field</u>, <u>temperature</u>, and <u>time</u> [1,2]:
 - $\Delta V_{T} = A * \exp(\gamma E_{ox}) * \exp(-E_{A}/kT) * t^{n}$
 - n typically \sim 0.2 0.25 for Si devices
- SiC has an order of magnitude higher number of interface traps (N_{IT}) than Si devices, and likely higher near-interface oxide trap density (N_{ox})
 - V_T stability is a potential concern
- N interface passivation may introduce additional effects.

[1] J.H. Stathis and S. Zafar, "The negative bias temperature instability in MOS devices: A review," Microelectronics Reliability 46 (2006) pp. 270-286.

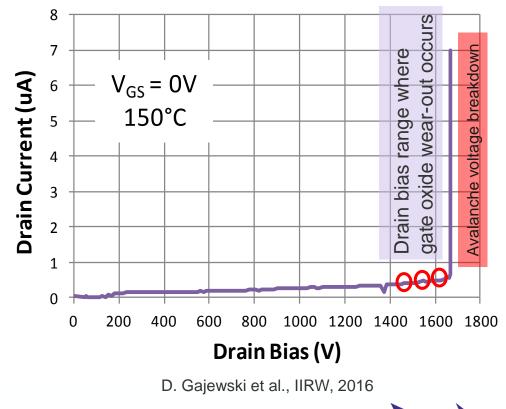
[2] D.K. Schroder, "Negative bias temperature instability: What do we understand?" Microelectronics Reliability 44 (2007) pp. 841-852.



Threshold Voltage Stability in SiC Power MOSFETs 900V 65mohm SiC MOSFETs Wolfspeed C3M0065090D 1 Model tⁿ, n=0.19 n ~ 0.19: similar to nitrided SiO2/Si ΔV_{T} (V) 0.1 Suggests similar mechanism 150°C, +19V_G (rated for $V_G = 15V$) 0.01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10⁻² 10^{0} 10^{2} 10^{4} **PBTI time (hrs)**


Terrestrial Neutrons

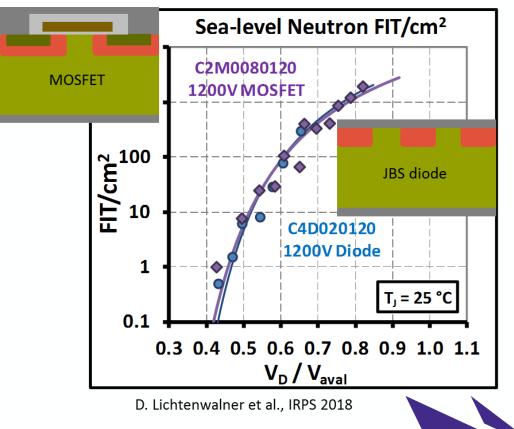
TDDB



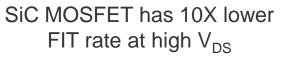
ALT-HTRB

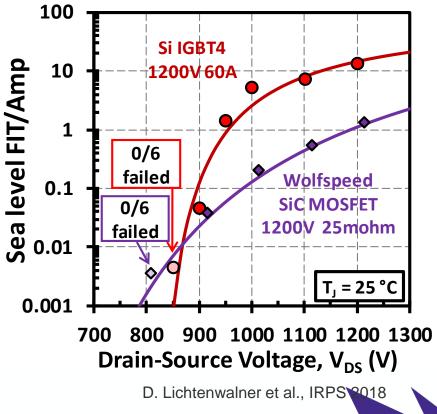
Accelerated life test high temperature reverse bias (ALT-HTRB)

- Full production 1200V, 80 mΩ MOSFETs in TO-247-3 packages (Wolfspeed C2M0080120D)
- Reverse bias breakdown can be accelerated with drain voltage almost up to the avalanche voltage


Accelerated life test high temperature reverse bias (ALT-HTRB)

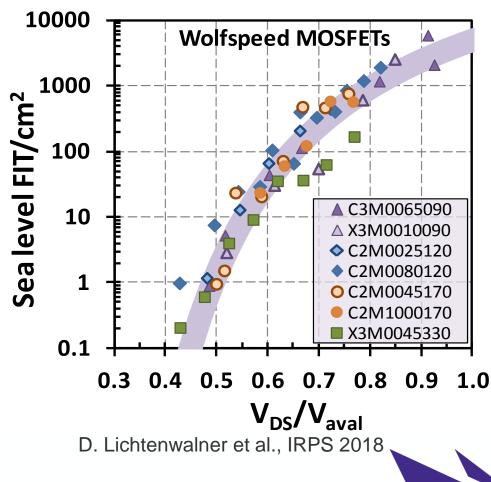
- Full production 1200V, 80 mΩ MOSFETs in TO-247-3 packages (Wolfspeed C2M0080120D)
- ~30 devices per stress voltage; MTTFs shown
- Fit with Weibull statistics and linear-V model
 - Empirical fit seems pretty good
 - Extensive testing over wide range of testing not yet shown to distinguish from other gate oxide wear-out models such as:
 - > V-n
 - > 1/E
- Predicts high lifetimes at typical use voltages


Terrestrial Neutrons: MOSFETs and Diodes


- MOSFETs and diodes show the same neutron reliability:
- Active area & drift effects
 dominate reliability
- Failure analysis shows no indication of MOSFET parasitic NPN turn-on or gate oxide breakdown

Terrestrial Neutrons: SiC vs. Si

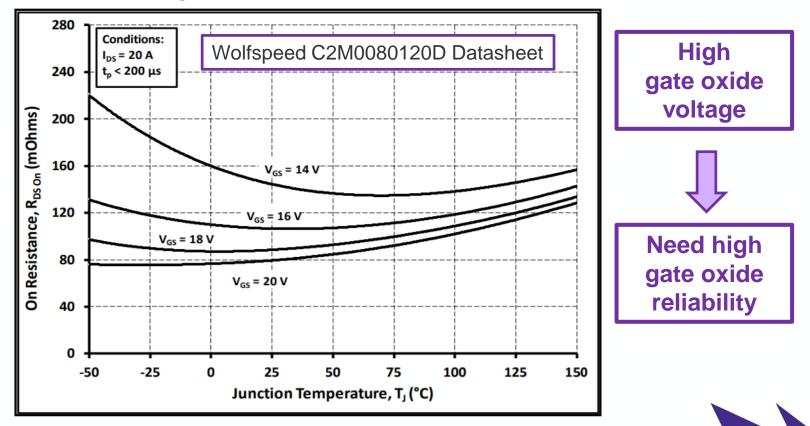
- Si IGBTs show sharper failure onset, but higher max failure rate
- Both the SiC & Si parts may require a VDS derating, but SiC is more immune to VDS overshoot

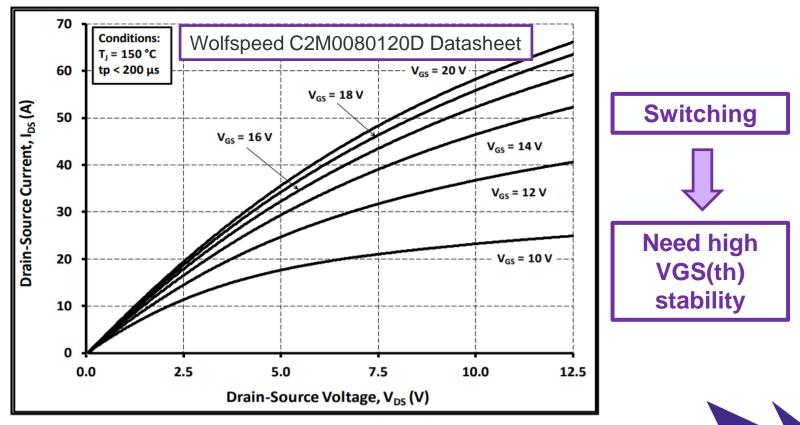


Threshold Voltage Stability

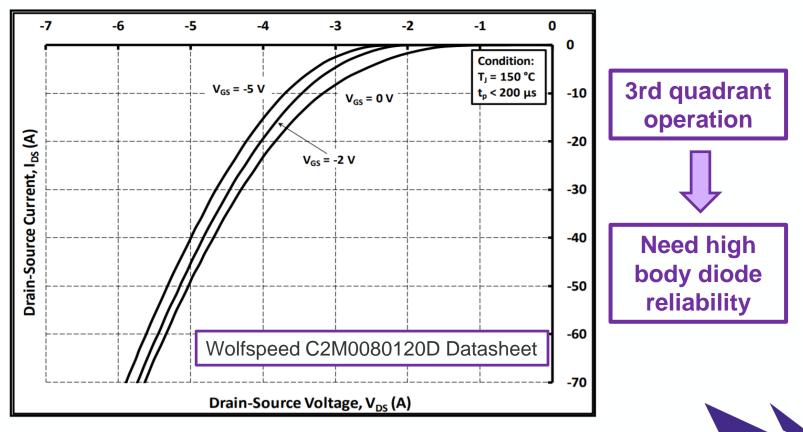


- All device FIT rates scale similarly with active area & drift field (relative to avalanche)
- Active area & drift design can be tailored to meet applicationspecific system lifetime requirements

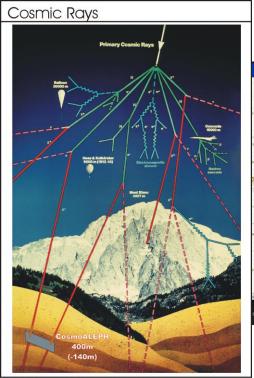

Application considerations



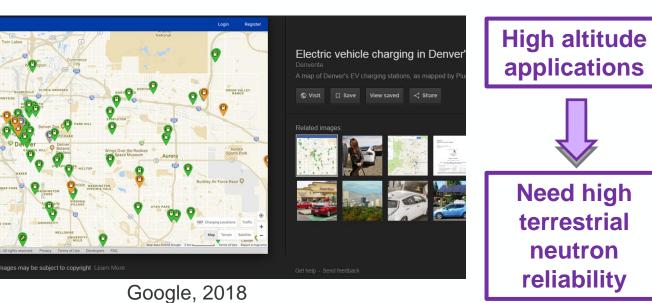
© 2018 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.


Gate Oxide Voltage vs. On-Resistance -> Performance

Switching -> Threshold Voltage



3rd Quadrant Operation



© 2018 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.

High Altitude Applications -> Terrestrial Neutrons

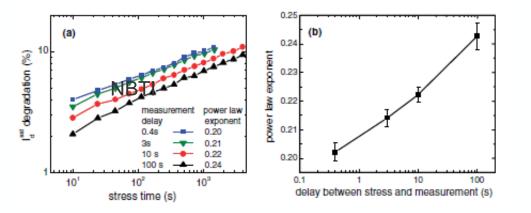
Particle Physics Slides • Saschia Marc Schmeling 1999 • Original Picture: CER

Outline

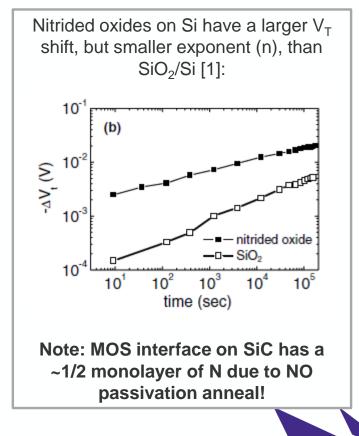
- Mission profile considerations and device salient features
- Potential failure mechanisms
- Wear-out mechanisms & intrinsic reliability
- Product qualification
- Field reliability
- Industry-wide consortia guidelines and standards

Typical THB-80 Assessment

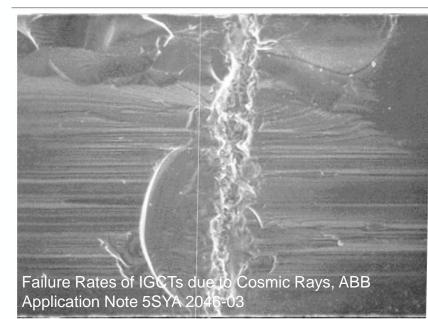
Stress	Abrv	Sample Size Per Lot	Lots	on #	Reference (current revision)	Additional Requirements
Temperature- Humidity-Bias at 80% of Rated Voltage	THB-80	77	3	0	NA	1000 hours at 85 °C, 85% RH with device reverse biased to 80% of rated voltage


Typical ESD Classification

Stress	Abrv	Sample Size Per Lot		Reference (current revision)	Additional Requirements
ESD Characterization	ESD	10 each HBM and CDM	3	AEC Q101-001 and Q101- 005	For HBM: gate-to- source pulsing (worst case pin combination)

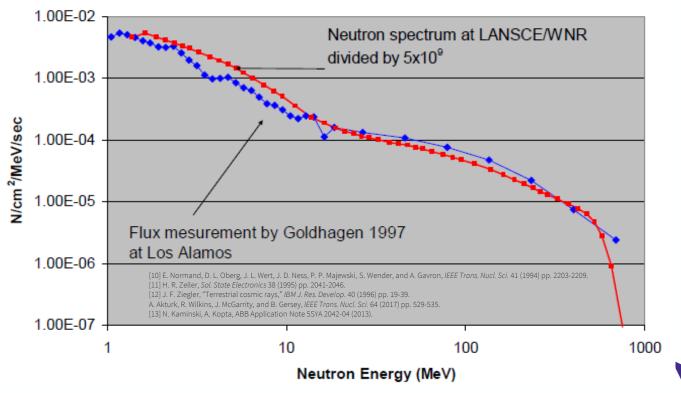


Threshold Voltage Stability in Si CMOS


- $\Delta V_T(t)$ follows a log-log relationship
- ΔV_T and n depend on the sense measurement time (relaxation effects) [1]

1] J.H. Stathis and S. Zafar, "The negative bias temperature instability in MOS devices: A review," *Microelectronics Reliability* 46 (2006) pp. 270-286

- Failure rate is constant with time (FIT): fails per billion device hours)
- Failures are abrupt with very little sign of degradation prior to failure
- Modeling determined empirically at neutron beam facilities to simulate the effect of terrestrial neutrons:
 - Linear V drain voltage acceleration
 - Temperature deceleration (negative activation energy! but this is a small effect)
 - Altitude / neutron flux
 - C1-6: empirical constants



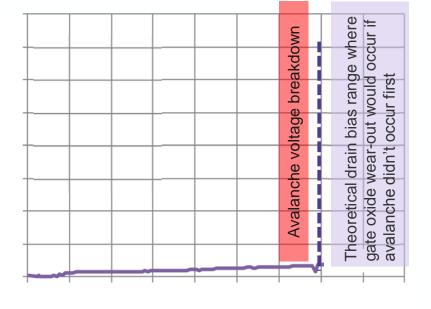
A molten channel through a silicon device created by a charge avalanche triggered by incident cosmic rays during blocking.

 $\lambda = C_3 \exp\left(\frac{C_2}{C_2 - V}\right) \cdot \exp\left(\frac{T_0 - T}{C_1}\right) \cdot \exp\left(\frac{1 - \left(1 - \frac{n}{C_5}\right)}{C_5}\right)$

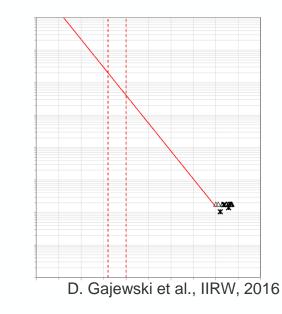
Neutron Flux at Los Alamos and LANSCE/WNR

© 2018 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.

- No lifetime extrapolation required
- Measure actual failure rate due to neutron irradiation @ device use fields
- Only scale the neutron fluence
 - <u>**F**</u>ailure <u>**I**</u>n <u>**T**</u>ime (FIT) = Failures per billion device hours failure <u>rate</u>
 - FIT rate is scaled to sea level


 $FIT Rate @ Sea Level = \frac{FIT Rate under Neutron flux}{Neutron flux}$

After D. Lichtenwalner et al., IRPS 2018


Accelerated life test high temperature reverse bias (ALT-HTRB)

For certain MOSFET device designs, ALT-HTRB does not work because avalanche breakdown occurs at lower voltage than gate oxide wear-out would theoretically occur

Drain Bias

Compare right-censored life test results to other generations (or devices with exaggerated and non-standard channel designs), the voltages and acceleration coefficient can be scaled, and a lower bound can be placed on the lifetime curve

© 2018 Cree, Inc. All rights reserved. Wolfspeed® and the Wolfspeed logo are registered trademarks of Cree, Inc.

Drain Current

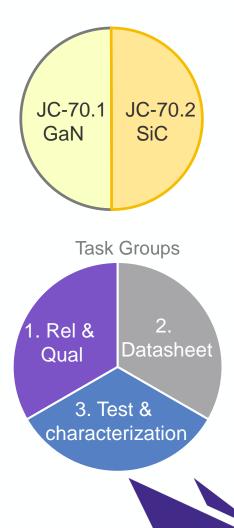
Reliability Testing

Testing Type	Purpose	Key Metric	Example
Qualification Testing	Designed to demonstrate a minimum outgoing quality and early life failure percentage	Lot Tolerant Percent Defect (LTPD)	3 lots * 77 samples per lot, with ZERO FAILURES, demonstrates LTPD < 1% with 90% statistical confidence
Reliability Testing	Designed to demonstrate the long- term wear-out lifetime that can be expected	Median Time To Failure (MTTF) or t1% (time to 1% failures)	TDDB testing to failure shows that C2M MOSFET MTTF is ~ 30 million hours

Potential Failure Mechanisms Summary

Requirement	Gate oxide breakdown	SiC breakdown	Bipolar NPN	Termination breakdown	Threshold drift	Increased resistance / reduced current flow
High drain bias	HTRB, ALT- HTRB	HTRB, ALT- HTRB		HTRB, ALT- HTRB	HTRB, ALT- HTRB	
High altitude	n-irradiated HTRB	n-irradiated HTRB	n-irradiated HTRB			
High humidity	THB			THB		
High gate bias	TDDB, HTGB				NBTI, PBTI	
3 rd quadrant						Body diode HTOL

Industry consortia guidelines and standards



Consortium	Abbreviation
Joint Electron Device Engineering Council	JEDEC
Automotive Electronics Council	AEC
International Electrotechnical Commission	IEC
Japan Electronics and Information Technology Association	JEITA

- JC-70 committee newly formed to create guidelines (JEPs) and standards (JESDs) for power conversion devices
- Each subcommittee has 3 task groups (TGs)
- TG702_1: SiC reliability and qualification
 - Kicked off activities at WIPDA 2017
 - Charter established, Teams formed to work on guidelines first, to be followed by standards
 - Currently > 50 members from >28 member companies + SMEs
 - Contact me if interested in participating!
- Task groups are open to paid member companies
- Also welcome participation from subject matter experts from nonmember entities, such as academia

