650V GaN HEMT Reliability for Automotive Applications

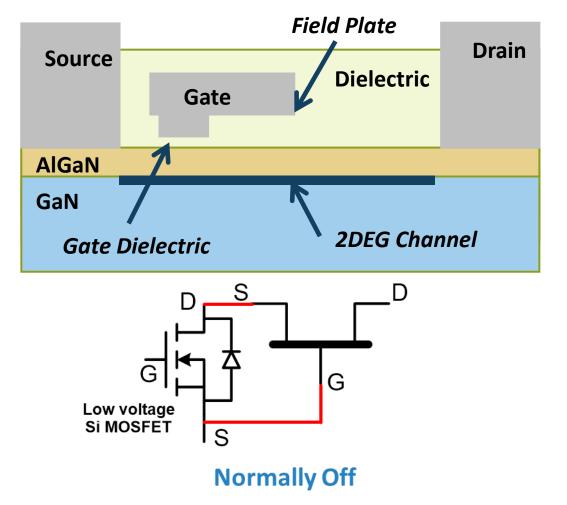
> Ronald Barr VP Quality & Reliability APEC 2019

Highest Performance, Highest Reliability GaN

transphorm Five Stages of Automotive Qualification

- 1. Product Qualification (Q101: Cookbook standard)
- 2. Extended Qualification (Beyond Q101)
- 3. Intrinsic Reliability (Lifetime/acceleration)
- 4. Extrinsic Reliability (FIT/PPM/MTBF)
- 5. Field Reliability

Note: this applies equally to commercial qualification


Product Qualification1. AEC Q1012. Testing beyond qualification

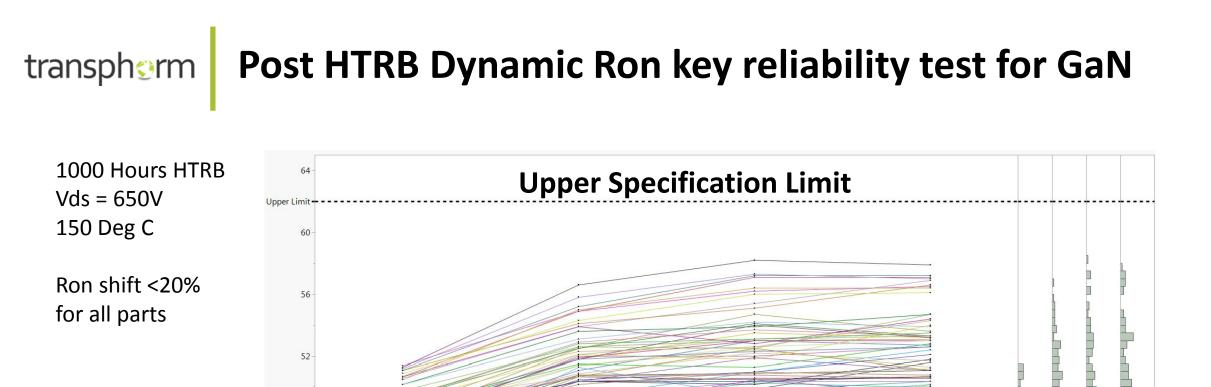
Most data from: TPH3205WSQA: Two Chip Normally-off, AEC-Q101

- D-mode GaN HEMT in series with an E-mode low voltage silicon FET.
- Package: TO-247
- V_{DS(min)} = 650 V,
- V_{(TR)DSS} = 800 V,
- $R_{DS(on)eff} = 62 \text{ m}\Omega$,

Some data is also presented on TP65H035WSQA, qualified to 175C/650V

Simplified Cross Section of GaN HEMT

4


TPH3205WSQA: Qualified to AEC-Q101 Standard

 First step towards producing products for automotive market

transphorm

TEST	SYMBOL	CONDITIONS	SAMPLE	RESULT
High Temperature Reverse Bias	HTRB	TJ=150⁰C V _{DS} = 650V 1000 HRS	3 lots – 77 parts per lot 231 total parts	0 Fails PASS
Highly Accelerated Temp and Humidity Test	HAST	130℃ 85% RH 33.3 PSI Bias = 100V 96 HRS	3 lots 77 parts per lot 231 total parts	0 Fails PASS
Temperature Cycle	тс	-55ºC / 150ºC 2 Cycles / HR 1000 Cycles	3 lots 77 parts per lot 231 total parts	0 Fails PASS
Temperature Cycling Hot Test	ТСНТ	125°C Test After TC	3 lots 77 parts per lot	0 Fails PASS
Wire Bond Integrity	WBI	150ºC, 500 hours	3 lots 5 parts per lot	0 Fails PASS
Power Cycle	PC	25°C / 125°C ΔT = 100°C 15,000 Cycles	3 lots 77 parts per lot 231 total parts	0 Fails PASS
High Temperature Storage Life	HTSL	150⁰C 1000 HRS	3 lots 77 parts per lot 231 total parts	0 Fails PASS
High Temperature Gate bias (Cascode)	HTGB	150°C 1000 HRS V _{GSS} =18V	3 lots 77 parts per lot 231 total parts	0 Fails PASS
High Temperature Gate bias (HEMT ONLY)	HTGB#2	150°C 1000 HRS V _{GSS} =-35V	3 lots 77 parts per lot 231 total parts	0 Fails PASS
High Humidity High Temp Reverse Bias	H3TRB	85⁰C/85% RH 1000 HRS 100V	3 lots 77 parts per lot 231 total parts	0 Fails PASS
Unbiased Accelerated Stress Test	UHAST	130ºC 85% RH 96 HRS	3 lots 77 parts per lot 231 total parts	0 Fails PASS
Destructive Physical Analysis	DPA	Post TC & HAST	3 lots 2 Parts Per Lot	0 Fails PASS

HTRB250

HTRB500

HTRB1000

HTRB000 HTRB0250 HTRB0500 HTRB100

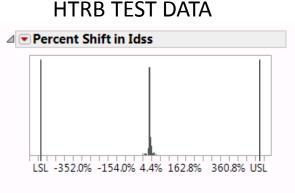
6

Dynamic R_{on}

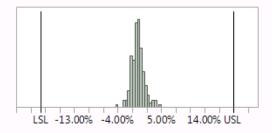
saturates after

changes

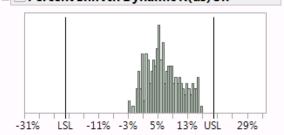
250 hours


48

44

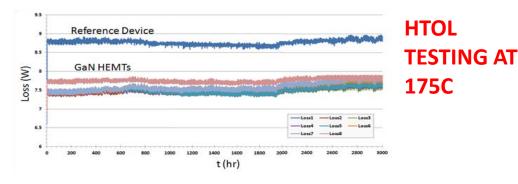

Final Test

TP65H035WSQA 175C Q101 Automotive Qualification Test Data Includes electrical, package and functional testing


- Key Qualification Tests @ 175C
 - HTRB @ 650v
 - HTGB
 - Temperature Cycle (TC)
 - -55C to **175**C
 - HTOL

Percent Shift in Vth

✓ ■ Percent Shift In Dynamic R(ds)On



Data showing the percent shift in Idss, Vth and Dynamic R(ds)on before and after 1000 hours of <u>HTRB, at 650Volts, 175C</u>

This meets and exceeds the requirements for passing automotive qualification per the Q101 Rev. D1 specification

Qualification testing "beyond" Q101 includes HTOL, Gate Robustness, Radiation, HV Switching.

Distribution

Circuit: Boost converter

- Input / Output voltage: 200V / 400 V
- Operating frequency: 300kHz
- Operating temperature: Tj = 175°C
- Output power: 410W
- Test time: 3000 hours

✓ ▼ Shift% Id Summary Statistics -0.026827 Std Dev 0.050959 Std Err Mean 0.0033529 Upper 95% Mean -0.020221 Lower 95% Mean -0.033433 -35% -23% -11% -3% 5% 13% 21% 29% 37% Shfit% Vth Summary Statistics 0.012039 Std Dev 0.0027542 Std Err Mean 0.0001813 Upper 95% Mean 0.01239 Lower 95% Mean 0.0116819 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% Shift%_Ron

-10% -7% -5% -3% -1% 1% 3% 5% 7% 9%

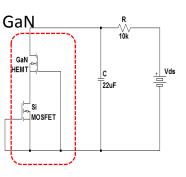
GaN HEMT Only HTGB 175C Vg = -35 volts

Removes "protective" effect of SiFET on HEMT stress Performed to Q101 standard

Accelerated Single Event Burn Out

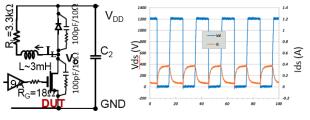
 Summary Statistics -0.02929

0.0194513


231

0.0012798

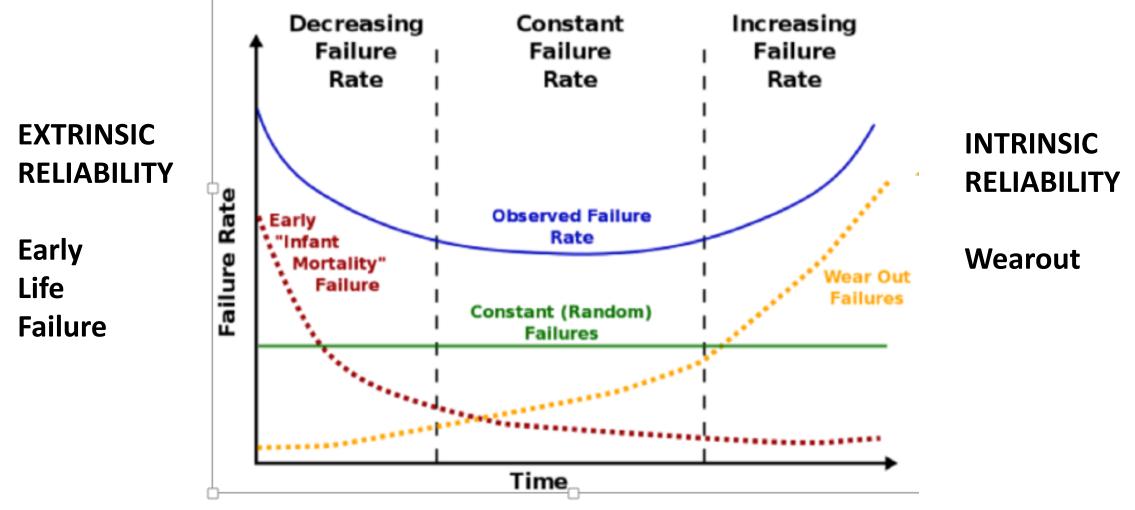
Std Dev


Std Err Mean Upper 95% Mean -0.026768 Lower 95% Mean -0.031812

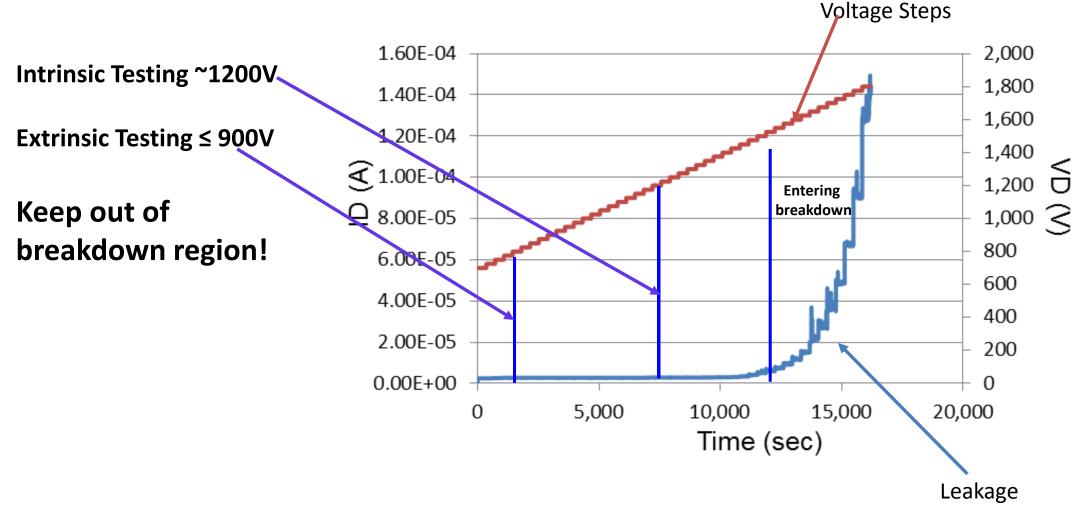
- Facility: RCNP at Osaka University .
- Neutron source: White beam compliant with JEDEC JESD89A
- Total fluence: 1.3E+09 neutron/cm2 •
- Results: <1.5 fit(CL60) @Vds=600V • with no failure

Buck switching circuit

Vdd=1000V to 1200V f=50KHz, 150KHz

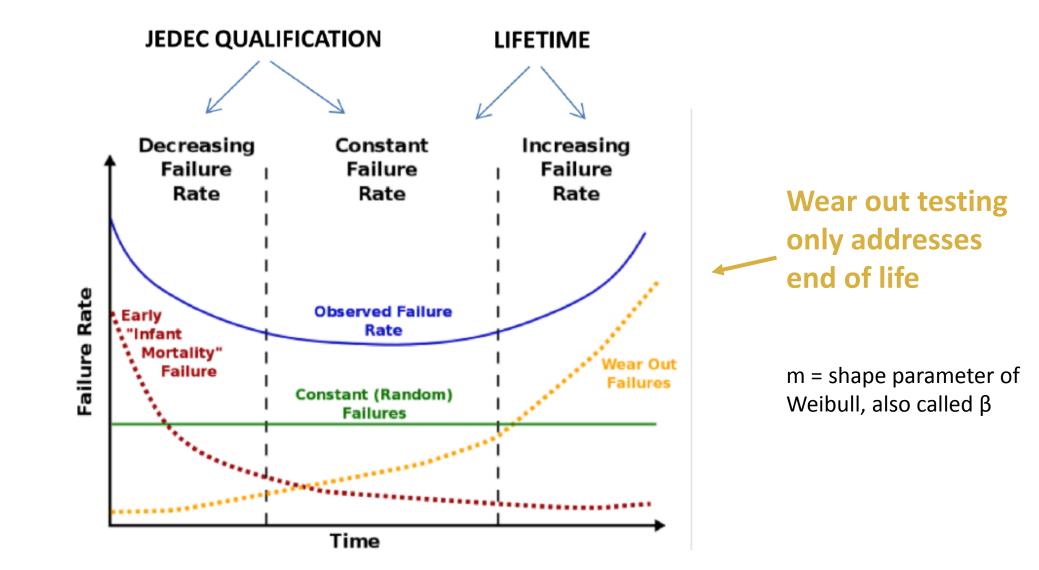

1000V Switching for 1000 Hours

V_{in} C₁

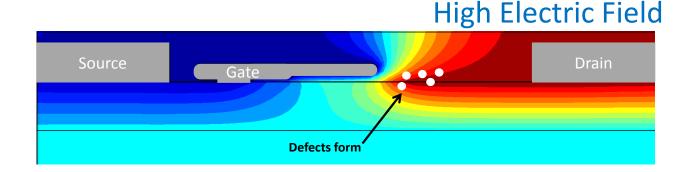

8

Intrinsic vs Extrinsic Testing

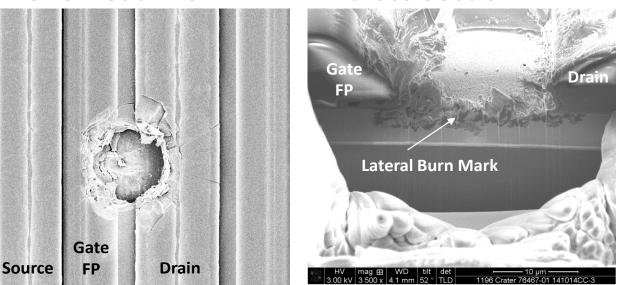
Extrinsic vs Intrinsic Testing Both are required to be able to publish FIT/PPM/MTBF Data


transphorm Pick the correct conditions for the test you need to run

page 11

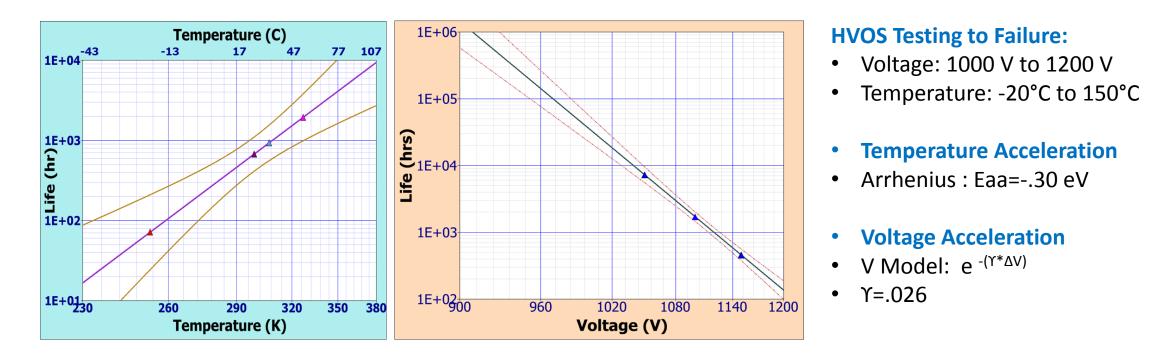

Intrinsic Reliability

transphorm Intrinsic Failure focuses on Wear out



High Temperature Reverse Bias Primary Failure Mode Lateral breakdown from Field Plate to Drain

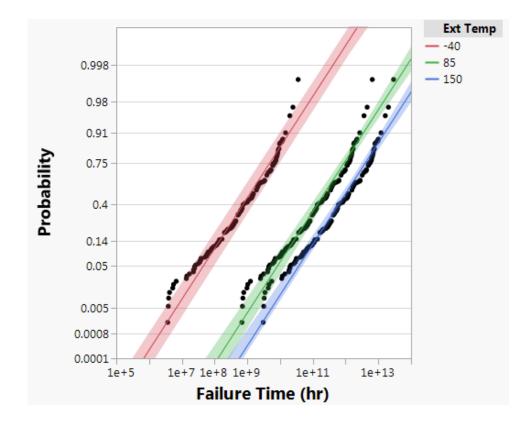
- Under high electric field defects form in the dielectric
- Dielectric failure allows short from Gate-to-Drain
- Same mode observed in Infant Mortality, Useful Life and Wear out
- Failure mode limits the lifetime of the device in most mission profiles



Overhead View

Cross Section

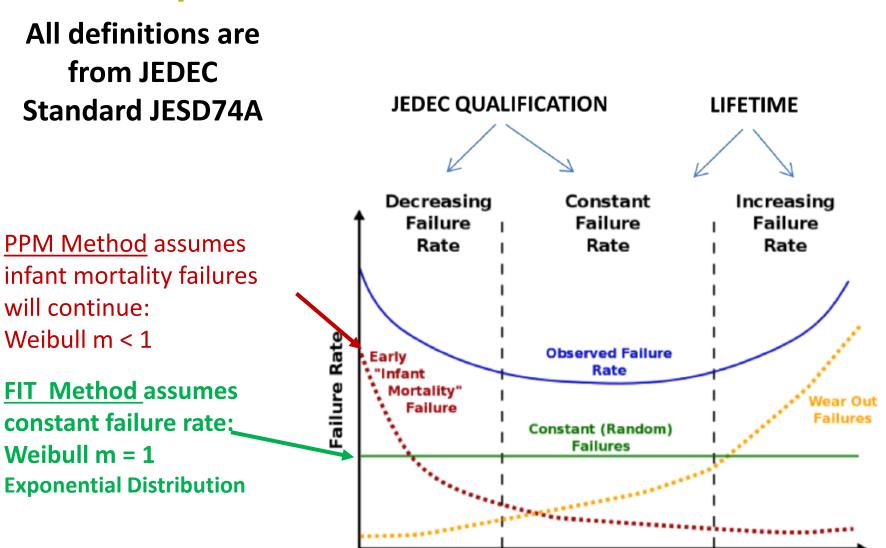
Determination of voltage and temperature acceleration factors: Physics of Failure Three temperature/Three voltages



Note: the standard calls for the use of the V model for voltage acceleration unless there is data supporting an alternative: V model results in the <u>"shortest" lifetime</u>

HVOS: Wear out lifetime exceeds typical 10 year customer requirement by large factors

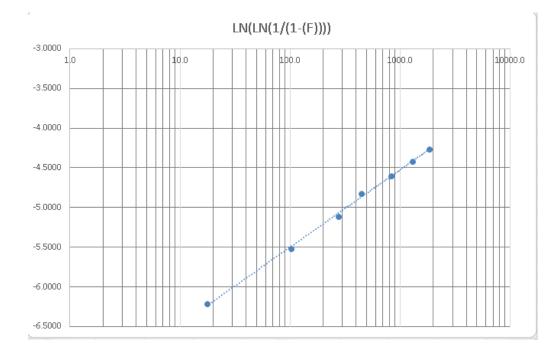
Acceleration factor and wear out are very important parameters for understanding device reliability.


This data should not be used to report FIT rates or PPM quality!

Typical Use conditions lifetime ~10⁸ hours

Extrinsic Reliability: *Early Life Failure (ELF)* Field Reliability Data

Parts Per Million (PPM) Failure in Time (FIT): Failures per billion device hours Mean Time Between Failure (MTBF)



Time

m = shape parameter of Weibull, also called β

transphorm PPM Method vs. FIT Method

900V test data shows constant failure rate validates use of exponential model

900 V test to failure confirms that m = 1, justifying use of exponential function

Do not assume exponential distribution without supporting data!

- Stress parts at high voltage until some small percentage failed
 - Calculate Weibull parameters
 - Confirm m=1

transphorm Setting ELF Targets: ~1 FIT

- MTBF (Mean Time Between Failures)
- Do not confuse MTBF with time to first failure
 - Parts remaining = e^{-(expected lifetime/MTBF)}
 - 100 year MTBF
 - 10,000 PPM/Year
 - 1,142 FIT
- 87 million hour MTBF = 100 PPM/Year=11 FIT

FIT = 10⁹/MTBF_{hours} 88 PPM/Year = 10 FIT 8.8 PPM/Year = ~ 1 FIT

Note: MTBF units always seem really large. Do not let the numbers lull you into a false sense of security

Problem: Use of Temperature Acceleration Alone to demonstrate ELF FIT<1 requires large number of parts/resources. Even for Silicon!

Sample Size Required for 1 FIT @ 85C

Eaa	# Parts
1.0	6,286
0.7	28,008
0.5	75,839
0.3	205,355
0.1	556,052
0.0	915,000
-0.1	1,505,659
-0.3	4,076,974
-0.5	11,039,493
-0.7	29,892,371
-0.9	80,941,563
-1.0	133,191,711

Assumes "standard" HTRB Qual Conditions: 150C/650V/1000 hrs per test

Power Electronics run at relatively high temperatures, reduces acceleration factor of standard HTRB testing

Voltage Acceleration is required

Early Life Failure Industry First for High Voltage GaN

- 4000 Devices Tested
- 1e⁹ accelerated device hours
- Voltage Range: 520V 900V
- Temp Range: 25C 175C

ELF @ 150C

Voltage	FIT	MTBF hrs	PPM/Yr
520 V	0.42	2E+09	3.6
480 V	0.15	7E+09	1.3
400 V	0.02	5E+10	0.2

Temperature and voltage conditions can be used to generate lifetime estimates based upon mission profile

Field PPM Rates showing excellent reliability in line with other WBG devices in production

- >400k production parts shipped to date
 - 3 Billion device hours
- To calculate field return rate we "discount" the number of device hours by ½ (so that we do not take "credit" for parts that have not actually shipped to users yet)
- Field failure rate:
 - 20 PPM/Year
 - FIT =2.2

Pitfalls to avoid in reliability testing

- Acceleration testing: pick reasonable conditions and if using voltage acceleration stay out of the breakdown region
- Use the appropriate voltage acceleration model
 - V model is generally appropriate unless you can justify a different one
 - 1/V Model may give you false sense of security
- Do not use wear out data to predict field reliability
 - Early Life Failure Testing: JESD74A

Conclusion: Five stages in automotive qualification demonstrated

- 1. Product Qualification (Q101:Cookbook standard)
- 2. Extended Qualification (Beyond Q101)
- 3. Intrinsic Reliability (Lifetime/acceleration)
- 4. Extrinsic Reliability (FIT/PPM/MTBF)
- 5. Field Reliability