Importance of measuring parasitic capacitance in isolated gate drive applications W. Frank **Infineon Technologies**

Why is capacitive coupling important in high voltage (HV) applications?

Measurement results

infineon

Contents

2

Why is capacitive coupling important in high voltage (HV) applications?

Galvanic isolation techniques

Copyright © Infineon Technologies AG 2017. All rights reserved.

High DC-link voltages lead to longer exposure to dV/dt stress

- Isolated gate drivers are used in state-of-the-art in systems with IGBT in half bridge configurations and a DC voltage up to 900 V.
- Modern power transistors (high speed IGBT, SiC) allow very high dV/dt.
- The times, in which dV/dt can act, are long in systems with high DC voltage.
- Noise which is generated by dV/dt overrides isolated signal transfer due to coupling capacitances
- Analyses of capacitive behavior is required for:
 - PCB layout
 - Gate driver ICs
 - Transformers for secondary side supply of gate driver ICs

CMTI and C_{IO} specification are performance parameters for gate driver ICs

- Disturbances via the input-to-output capacitance C_{IO} may limit the reliability of power electronics, e.g. by unintended turn-on of a gate driver output and potentially damaging the power stage
- Therefore C_{IO} and common mode transient immunity (CMTI) of gate driver ICs are important parameters for gate drivers to meet systems performance targets.
- > Galvanic isolation standards for magnetic couplers such as VDE0884 define $C_{\rm IO}$ and CMTI measurement methods

Are gate drivers the real source of dV/dt coupling effects?

- The physical realization of electronic components can bring parasitic capacitive coupling effects from the power side to the control side.
- The size of isolation structures for magnetic and capacitive couplers are in the same order of magnitude

Copyright © Infineon Technologies AG 2017. All rights reserved.

The windings of discrete transformers can have a considerable capacitive coupling

The physical realization of electronic components can bring parasitic capacitive coupling effects from the power side to the control side.

Note: Transformers of SMPS have usually a > larger physical size and coupling capacitance

8

Contents

Measurement results

Technique	Pro	Cons
Voltage ramp	Simple	Equipment injects errors
Impedance	Precise Equipment <0.1%	Setup influences result -> need compensation !
Resonance frequency of parallel resonator		Stable HF oscillation required
RC charging in time-domain	Simple setup	Errors by input capacitance of equipm.
Transition frequency of RC low-pass		Limited availability of suitable components
Wien bridge	Relatively simple	Limited availability of suitable components
Capacitive divider	Simple	Input impedance of equipment

The test setup at a glance

> Test PCBs for various gate driver ICs in different packages

Compensation of influences originating from the test setup is mandatory

- Compensation test setup including adapter for DUT
 - R_s and L_s -> Z_s by SHORT
 - C_P and G_P -> Y_P by OPEN
- The measurement results can now be corrected by the known influence of Z_s and Y_P

$$Z_{\rm S} = R_{\rm S} + j\omega L_{\rm S} \quad for Z_{\rm S} \gg Z_{\rm SHORT}$$

$$Y_{\rm P} = G_{\rm P} + j\omega C_{\rm P} \quad for Z_{\rm S} \ll \frac{R_{\rm S} + j\omega L_{\rm S}}{Y_{\rm P}}$$

The capacitances of the power supply XFMR are 10x larger than those of gate driver ICs

Summary

>

>

All power electronics contain switched nodes. Parasitic capacitances can therefore easily inject currents into signals and references (GND).

The capacitive coupling of gate driver ICs is around 1 pF. Small coupling capacitances are a key factor for good CMTI – benefits include robust operation and a more accurate sensing.

 Discrete transformers used for the gate driver IC power supply add a large coupling capacitance to power electronic systems. It is also important to choose low coupling capacitance for total system performance.

Part of your life. Part of tomorrow.

