Importance of measuring parasitic capacitance in isolated gate drive applications

W. Frank
Infineon Technologies
Contents

1. Why is capacitive coupling important in high voltage (HV) applications?

2. Measurement results
Contents

1. Why is capacitive coupling important in high voltage (HV) applications?

2. Measurement results
Galvanic isolation techniques

- Inductive (Magnetic) Coupling
- Capacitive Coupling
- Optical Coupling
High DC-link voltages lead to longer exposure to dV/dt stress

- Isolated gate drivers are used in state-of-the-art in systems with IGBT in half bridge configurations and a DC voltage up to 900 V.
- Modern power transistors (high speed IGBT, SiC) allow very high dV/dt.
- The times, in which dV/dt can act, are long in systems with high DC voltage.
- Noise which is generated by dV/dt overrides isolated signal transfer due to coupling capacitances.
- Analyses of capacitive behavior is required for:
 - PCB layout
 - Gate driver ICs
 - Transformers for secondary side supply of gate driver ICs
CMTI and C_{IO} specification are performance parameters for gate driver ICs

- Disturbances via the input-to-output capacitance C_{IO} may limit the reliability of power electronics, e.g. by unintended turn-on of a gate driver output and potentially damaging the power stage.

- Therefore C_{IO} and common mode transient immunity (CMTI) of gate driver ICs are important parameters for gate drivers to meet systems performance targets.

- Galvanic isolation standards for magnetic couplers such as VDE0884 define C_{IO} and CMTI measurement methods.
Are gate drivers the real source of \(\frac{dV}{dt} \) coupling effects?

› The physical realization of electronic components can bring parasitic capacitive coupling effects from the power side to the control side.

› The size of isolation structures for magnetic and capacitive couplers are in the same order of magnitude.
The windings of discrete transformers can have a considerable capacitive coupling

- The physical realization of electronic components can bring parasitic capacitive coupling effects from the power side to the control side.

- A measurement of magnetic couplers and transformers is required.

- Note: Transformers of SMPS have usually a larger physical size and coupling capacitance.
Contents

1. Why is capacitive coupling important in high voltage (HV) applications?

2. Measurement results
Various measurement techniques can be used for measuring small capacitances

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pro</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage ramp</td>
<td>Simple</td>
<td>Equipment injects errors</td>
</tr>
<tr>
<td>Impedance</td>
<td>Precise Equipment <0.1%</td>
<td>Setup influences result -> need compensation!</td>
</tr>
<tr>
<td>Resonance frequency of parallel resonator</td>
<td>---</td>
<td>Stable HF oscillation required</td>
</tr>
<tr>
<td>RC charging in time-domain</td>
<td>Simple setup</td>
<td>Errors by input capacitance of equipm.</td>
</tr>
<tr>
<td>Transition frequency of RC low-pass</td>
<td>---</td>
<td>Limited availability of suitable components</td>
</tr>
<tr>
<td>Wien bridge</td>
<td>Relatively simple</td>
<td>Limited availability of suitable components</td>
</tr>
<tr>
<td>Capacitive divider</td>
<td>Simple</td>
<td>Input impedance of equipment</td>
</tr>
</tbody>
</table>
The test setup at a glance

› LCR analyzer: Agilent 4285A
› Test fixture: Agilent 16047A
› Test PCBs for various gate driver ICs in different packages
Compensation of influences originating from the test setup is mandatory

- Compensation test setup including adapter for DUT
 - \(R_S \) and \(L_S \) -> \(Z_S \) by SHORT
 - \(C_P \) and \(G_P \) -> \(Y_P \) by OPEN

The measurement results can now be corrected by the known influence of \(Z_S \) and \(Y_P \)

\[
Z_S = R_S + j \omega L_S \quad \text{for} \quad Z_S \gg Z_{\text{SHORT}}
\]

\[
Y_P = G_P + j \omega C_P \quad \text{for} \quad Z_S \ll \frac{R_S + j \omega L_S}{Y_P}
\]
The capacitances of the power supply XFMR are 10x larger than those of gate driver ICs.
Summary

› All power electronics contain switched nodes. Parasitic capacitances can therefore easily inject currents into signals and references (GND).

› The capacitive coupling of gate driver ICs is around 1 pF. Small coupling capacitances are a key factor for good CMTI – benefits include robust operation and a more accurate sensing.

› Discrete transformers used for the gate driver IC power supply add a large coupling capacitance to power electronic systems. It is also important to choose low coupling capacitance for total system performance.
Part of your life. Part of tomorrow.

infineon