Isolation in Power Supply

Jason Duan

Mar. 2018
Isolation in Power Supply

The Challenges of Isolation in Power Supply
- Gate Drive Transformer
- Optocoupler

Why use iCoupler Technology

Applications
- DC-DC Power Module
- Automotive
- Inverter
- Isolated Controller

Summary
Isolation in Power Supply

Isolated Signals in a Typical Power Supply

1. PWM Signal
2. Feedback/Error Signal
The challenges of isolation in power supply are sending digital or analog signals across the isolation barrier.

1. **Fast speed**
2. **Accuracy**
3. **Compact Size**.

Traditional isolation solutions are:

1. Gate Drive Transformer
2. Optocoupler
Gate Drive Transformer

Problems in Gate Drive Transformer

1. Core Saturation
2. Complex Design
3. Bulk Size
4. Duty Cycle Limit
Optocoupler

Problems in Optocoupler
1. Low bandwidth
2. Aging Issue
3. CTR with Temp. Variation
4. Power consumption

\[\text{CTR} = \frac{I_c}{I_F} \]

CTR - Relative Current Transfer Ratio

\(V_{CE} = 5 \text{ V} \)
\(I_E = 5 \text{ mA} \)

\(T_{amb} - \text{Ambient Temperature (°C)} \)
Why use iCoupler Technology?

- **Performance**
 - 4x improvement in data rate and timing specifications

- **Integration**
 - Multiple isolation channel integrated with other functions reduces size and cost

- **Power Consumption**
 - Operates at levels up to 90% lower than optocouplers

- **Ease of Use**
 - Standard digital CMOS interfaces means no external components needed to connect to other digital devices

- **Reliability / Safety**
 - Eliminate LEDs used in optocouplers
Applications – DC/DC Power Module

Small Size For Space Critical Application
Applications – Automotive Power Supply

400Vin 12V/50A For Automotive

High Reliability

Isolated Gate Driver
3 Phase GaN Inverter
- Better Power efficiency
- Higher Power Densities
- Smaller form factor, reduced weight
- Increased Switching Frequencies

Applications – 3 Phase GaN Inverter
Applications – 3 Phase GaN Inverter

Next generation inverters will utilize advanced switching technologies GaN and SiC.

Isolated Gate Driver
Applications – Isolated Controller

BREAK THROUGH THE ISOLATION BARRIER

Industry’s First Isolated Current Mode Controller

- Highly Reliable and Efficient Power Supplies with Integrated Isolation
- Enables Reduced Component Footprint and BOM Cost
- Fast Transient Response Allows Reduced Output Capacitance
- System-Level Benefits Such as Light Load Mode and PGOOD

ANALOG DEVICES
AHEAD OF WHAT’S POSSIBLE™
Applications – Isolated Controller

ADP1074 – Active Clamp Forward with SR Gate Drivers
ADP1071/72 – Flyback/Forward Versions with SR

ADP1074 LGA package in 1/8th brick module
APPLICATION IMPACT
THE PROBLEM WITH OPTO-COUPLERS

OPTO-COUPLERS
► Current Transfer Ratio (CTR) degradation
► Limited bandwidth ~25kHz
► Size is somewhat large with minimal integration
► High temperature opto-couplers are expensive.
► Parameters vary greatly based on operating condition (I_F, R_L, T_A). Can counter with dual optos.

iCOUPLERS
► No gain degradation
► Typically ~400kHz bandwidth
► Size is small or comparable but high integration is possible for SoC
► Temperature stable
► Virtually same across PVT due to digital nature
Customer Value Proposition

► Eliminate Opto Current Transfer Ratio (CTR) Degradation
 ▪ CTR degradation can be up to 50% over life/temperature
 ▪ CTR has a 2X initial variation at Room Temp

► Efficiency
 ▪ Synchronous rectification
 ▪ Adjustable dead-time
 ▪ Light load modes

► Power Density
 ▪ Significant component integration
 ▪ Constant gain/CTR and higher iCoupler speed enable higher BW
 ▪ Allows system to operate at higher switching frequencies with smaller output filtering

► Ease of Use
 ▪ Level of integration makes isolated design more accessible
 ▪ CTR selection variation and degradation makes traditional optocoupler based design difficult
 ▪ Facilitate and accelerate the migration to embedded designs in I&I & CIFR

CTR = \frac{I_c}{I_F}
Customer Value Proposition
Eliminating OptoCoupler Limitations

► Optocouplers have an initial CTR spread of X2 at 25C
 • Numbers are not specified over the temp range

Transfer Characteristics (\(T_A = 25^\circ \text{C Unless otherwise specified.}\))

<table>
<thead>
<tr>
<th>DC Characteristics</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Device</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Transfer Ratio, Collector to Emitter</td>
<td>(I_f = 10 \text{ mA}, V_{CE} = 5 \text{ V})</td>
<td>CTR</td>
<td>CNY17-1/1-M</td>
<td>40</td>
<td>80</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNY17-2/2-M</td>
<td>63</td>
<td>125</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNY17-3/3-M</td>
<td>100</td>
<td>200</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CNY17-4</td>
<td>160</td>
<td>320</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

- For transient response, designer must assume worst case min. CTR value to meet spec.
- Low bandwidth, poor transient response. Adding more \(C_{out}\) does not necessarily help
- For stability, designer must assume worst case max. CTR value.
- Impacts phase margin and stability
Focus on CTR Ageing:

LEDs CTR wear-out with use
- Light output degrades with operating time

Wear-out accelerated by
- Increased current
- Elevated temperature
 - Most are rated to 85°C
 - Higher temperature ratings increase price and reduce speed

CTR reduction up to 50% results in deterioration in bandwidth and transient response

Digital Isolator Transfer Characteristics do not Change Over Time

Note: Internal temperature likely to be ~20°C higher than above
High Bandwidth Control Loop

Para 1

Para 2

Table

Para 3

Para 4

Para 5

Para 6

Para 7

Para 8

Para 9

Para 10

Para 11

Para 12

Para 13

Para 14

Para 15

Para 16

Para 17

Para 18

Para 19

Para 20

Para 21

Para 22

Para 23

Para 24

Para 25

Para 26

Para 27

Para 28

Para 29

Para 30

Para 31

Para 32

Para 33

Para 34

Para 35

Para 36

Para 37

Para 38

Para 39

Para 40

Para 41

Para 42

Para 43

Para 44

Para 45

Para 46

Para 47

Para 48

Para 49

Para 50

Para 51

Para 52

Para 53

Para 54

Para 55

Para 56

Para 57

Para 58

Para 59

Para 60

Para 61

Para 62

Para 63

Para 64

Para 65

Para 66

Para 67

Para 68

Para 69

Para 70

Para 71

Para 72

Para 73

Para 74

Para 75

Para 76

Para 77

Para 78

Para 79

Para 80

Para 81

Para 82

Para 83

Para 84

Para 85

Para 86

Para 87

Para 88

Para 89

Para 90

Para 91

Para 92

Para 93

Para 94

Para 95

Para 96

Para 97

Para 98

Para 99

Para 100
Summary

Compared with traditional optocoupler and gate drive transformer solutions, Analog Devices’ iCoupler Technology provide a more reliable, high bandwidth and small size isolation solution in power supply.