Turn-on performance comparison of current-source vs. voltage-source gate drivers
Content

1. Introduction
2. Gate driver boards
3. Double pulse test result
4. Summary
Agenda

1. Introduction
2. Gate driver boards
3. Double pulse test result
4. Summary
What does “current-source” and “voltage-source” gate drivers mean?

<table>
<thead>
<tr>
<th>Current source</th>
<th>Voltage source</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Current sources have a high resistive output by default.</td>
<td>› Voltage sources shall be as low resistive as possible.</td>
</tr>
<tr>
<td>› Any additional voltage drop in the gate drive loop has no influence on the gate current I_g (inside limits).</td>
<td>› Any additional voltage drop in the gate drive loop has immediate influence on the gate current I_g.</td>
</tr>
<tr>
<td>› Supposed to damp oscillations</td>
<td>› Prone to oscillations</td>
</tr>
</tbody>
</table>

![Current source diagram](image1)

![Voltage source diagram](image2)

Copyright © Infineon Technologies AG 2018. All rights reserved.
Comparison of gate driver IC functions

<table>
<thead>
<tr>
<th>Current source (1EDS20I12SV)</th>
<th>Voltage source (1ED020I12-F2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Isolated gate driver</td>
<td>› Isolated gate driver</td>
</tr>
<tr>
<td>› Current source control for turn-on integrated</td>
<td>› 2 A output capability</td>
</tr>
<tr>
<td>› Adjustability of switching speed from input side on-the-fly</td>
<td>› Adjustability of switching speed by manual change of R_g</td>
</tr>
<tr>
<td>› DESAT</td>
<td>› DESAT</td>
</tr>
<tr>
<td>› Current sense input</td>
<td>› ---</td>
</tr>
<tr>
<td>› Optional Two-level turn-off</td>
<td>› Optional Two-level turn-off</td>
</tr>
<tr>
<td>› Soft turn-off</td>
<td>› ---</td>
</tr>
<tr>
<td>› Precise output side monitoring</td>
<td>› Limited output side monitoring</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Gate driver boards</td>
</tr>
<tr>
<td>3</td>
<td>Double pulse test result</td>
</tr>
<tr>
<td>4</td>
<td>Summary</td>
</tr>
</tbody>
</table>
Driver boards for FF1200R12IE5
1200 A / 1200 V power module

- The same design and layout philosophy applies to both designs
- Approximately the same number of components per board
Agenda

1. Introduction
2. Gate driver boards
3. Double pulse test result
4. Summary
Test bench and test pulse timing

- Capacitor bank
- Wide bandwidth Pearson probe
- Power Module FF1200R12IE5
- Gate driver board under test

![Diagram of the test bench and pulse timing](image)

- \(V_{IN} \)
- \(V_{G2} \)
- \(T_{off} \)
- \(T_{on1} \)
- \(T_{on2} \)
- Gate driver board under test
- Capacitor bank
- Wide bandwidth Pearson probe
- Power Module FF1200R12IE5

Copyright © Infineon Technologies AG 2018. All rights reserved.
Switching waveform comparison

\[V_{DC} = 600 \text{ V}, \ I_C = 120 \text{A}, \ T_{vj} = 25^\circ\text{C} \]

<table>
<thead>
<tr>
<th>Current source (1EDS20I12SV)</th>
<th>Voltage source (1ED020I12-F2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow (3 V/ns)</td>
<td>Slow (3 V/ns)</td>
</tr>
<tr>
<td>Level 1</td>
<td>R_g = 4.7 \ \Omega</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (5 V/ns)</td>
<td>Normal (5 V/ns)</td>
</tr>
<tr>
<td>Level 5</td>
<td>R_g = 2.2 \ \Omega</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast (9 V/ns)</td>
<td>Fast (9 V/ns)</td>
</tr>
<tr>
<td>Level 11</td>
<td>R_g = 0.4 \ \Omega</td>
</tr>
<tr>
<td></td>
<td>Stronger tendency</td>
</tr>
<tr>
<td></td>
<td>for oscillations</td>
</tr>
</tbody>
</table>

Copyright © Infineon Technologies AG 2018. All rights reserved.
Commutation speed \((dv_F/dt)\) comparison

Current source (1EDS20I12SV)

- Low load \((dv_F/dt)\) ≈5 V/ns @ level5
- Hi load \((dv_F/dt)\) ≈5 V/ns @ level5

Current source IC keeps \(dv/dt\) constant over load range!

Easy to obtain test results due to simple change of speed from input side

Voltage source (1ED020I12-F2)

- Low load \((dv_F/dt)\) ≈5 V/ns @ 2.2 Ω
- Hi load \((dv_F/dt)\) ≈2.2V/ns @ 2.2 W

Speed is a decreasing function because \(R_{gint}\) reduces driving voltage, thus the gate current

Manual change of \(R_g\) for every branch of diagram
Turn-on energy E_{on} comparison

Current source (1EDS20I12SV)

- Starting with <30mJ@120A
- Ending with 140mJ@1200A

Voltage source (1ED020I12-F2)

- Starting with <30mJ@120A
- Ending with 320mJ@1200A

- Turn-on energy is a linear function
- Turn-on energy is a non-linear function

Current source method has much lower turn-on losses over load range when starting at the same low load condition!
Agenda

1. Introduction
2. Gate driver boards
3. Double pulse test result
4. Summary
Summary

The design effort of schematic and layout is equal for current source and voltage source gate driver boards.

E_{on} at full load (I_{nom}) is less than 50% for the same dv_F/dt condition at low load ($1/10 I_{\text{nom}}$) when using the current source gate driver.

Current source gate drivers such as 1EDS20I12SV overcome parasitic effects which influence the gate drive loop.
Part of your life. Part of tomorrow.