PACKAGE AND PLATFORM VIEW OF INTEL'S FULLY INTEGRATED VOLTAGE REGULATORS (FIVR)

Edward (Ted) Burton

Ivy Bridge Platform Haswell Platform

FIVR At a Glance

- 140MHz switching frequency
- Up to 16 phases per VR
- Up to 80MHz unity gain
- Non-magnetic package trace inductors
- MIM caps
- Silicon current density of 31 Amps/mm²
- Typical efficiency of 90% in turbo

FIVR Value Proposition

- Platform footprint, cost & thickness reduction
 - Smaller XYZ \rightarrow more features, thinner handhelds
- Platform power component cost reduction, while doubling graphics, adding EDRAM, doubling vector hardware...
- Battery life improvement
 - Reports of over 50% increase vs prior generation
- Graphics power-perf improvement
 - Tens of % improvement in constrained form-factors

Focu

Volume Scales ~1/Frequency

One 30A VR phase, prior generation Ultrabook 300kHz Switcher 800mm²

СМ

CPU and PCH chips plus 7 multi-phase FIVRs 140MHz Switchers 495mm²

466x Frequency 111x area shrink ~4x thickness shrink

FIVR Photo - Package Underside

FIVR Cutaway View

Power FETs and Control

Package Trace

Edward (Ted) Burton – Intel Corporation – APEC 2015

XRAY View – FIVR Inductors

Future Scaling Issue & Solution

Typical Package Cap vs MIM

- Reverse geometry 0204 1uF cap impedance curve
- Package cap inductance raises HF Z (70 milliohm @140MHz)
 - Needs high frequency parallel die capacitance
- No inductance for uniformly distributed MIM capacitor & uniformly distributed load, so no high frequency increase in Z
 - Nonuniform loads get "complicated"
 - Real loads and real phases are nonuniform

Real Behavior "Complicated"

Edward (Ted) Burton – Intel Corporation – APEC 2015

FIVR -> Thinner Handhelds

Ivy Bridge

Backside all power

Big inductors, butterfly mounted through board

Haswell

Backside bare

Small inductors & caps & 75% fewer

2mm thinner – cheaper - 10% larger battery

FIVR -> More Platform Features

Ivy Bridge × SATA

- × Analog audio
- × IR remote
- <u>One</u> USB3.0
 <u>two</u> USB2.0
- LAN <u>or</u> Thunderbolt

Haswell ✓ SATA

- ✓ Analog audio
- ✓ IR remote
- <u>Four</u> USB3.0
- LAN <u>and</u> Thunderbolt
- 2x graphics
- Free space to add more features
- ~\$5 Saved in power BOM

High UGB, Fast Transitions A Fringe benefit of miniaturization

	Typical prior generation VR	FIVR
Unity Gain Bandwidth	≤ 80kHz	≤ 80MHz
Core and Graphics voltage max transition times	100's of microseconds	100's of nanoseconds

Edward (Ted) Burton – Intel Corporation – APEC 2015

Power States – 2.6-122x Lower

Package State	Actions taken in various Package States	Ivy Bridge CPU power (W)	Haswell CPU power (W)
C0	Cores, Graphics active	17 W (TDP)	15 W (TDP)
C6	Core's and Graphics FIVRs off DDR in self refresh	2.3	0.9 <mark>1/2.6</mark>
C7	System agent & DDR IO gated off. CPU critical arrays on Sustain Rail.	2.2	0.85 <mark>1/2.6</mark>
C8	Display & IO FIVRs off. LLC flushed System Agent gated off. Vin = 1.2V.	N/A	0.077 <mark>1/29</mark>
C9	Vin set to 0V	N/A	0.018 1/122
C10	Platform power target of 100mW or	better.	N/A

Edward (Ted) Burton – Intel Corporation – APEC 2015

Ina

2x-3x Turbo Power Headroom

Small platform example:

- Old platform rails 1phase each:
 - Graphics: 30A inductor @ ~1V → ~30W max
 - Cores: 30A inductor @ $\sim 1.1V \rightarrow \sim 33W$ max
- FIVR platform's input rail:
 - 2 30A inductors @ 1.7V \rightarrow 102W max (shared dynamically)
 - Core-only workloads: <u>Triple</u> the available turbo power
 - Graphics workloads: <u>Double</u> the available turbo power for graphics

More Turbo Power Headroom → More Performance

- Higher burst frequency
- Larger graphics
- More cores

Graphics - 95% Lower Effective Z

Edward (Ted) Burton – Intel Corporation – APEC 2015

Graphics Power Reduction (Typical Example)

Edward (Ted) Burton – Intel Corporation – APEC 2015

Graphics Speedup (Cut/Pasted Prior Example)

Edward (Ted) Burton – Intel Corporation – APEC 2015

Lower Power, Higher Speed

Graphics Frequency

Summary

- 140MHz switching enables integrated output filters
 On-die MIM capacitors; package trace inductors
 Thinner platforms, with more features
 Reduced power component cost, while doubling graphics and core vector hardware and adding EDRAM
- Battery Increased life by upwards of 50% on many platforms
 - Quickly ramped input and output rails to support new sleep states
 - Set every rail to its optimal voltage
- Improved graphics power-perf 10's of %

Supporting Slides

90% Efficiency at Full Vout

