ADDITIVE MANUFACTURING IN POWER ELECTRONICS PACKAGING

Prof. Douglas C Hopkins, Ph.D.
Haotao KE
Laboratory for Research in Electronic Energy Packaging
North Carolina State University
1791 Varsity Drive, Raleigh NC 27518
DCHopkins@NCSU.Edu
Additive Manufacturing & 3D Printing
 • Defining AM & 3D
 • Global Technology Players and Market Trends
Review and Quantification of the Latest 3D Printing Technologies
 • Review of AM/3D Technologies
 • Understanding Industrial, Commercial and Consumer Equipment
Identification of Metrics and Drivers for Evolving AM in PE
Evolving R,D&D Process of interest
 • Identifying Applications to WBG devices
 • Demonstration of key technology advances
Completion of a New University Research Resource

(YOLE agreed to leave slides in Sunday’s Edu Course)
Parametric Design

Parametric design – Designer writes the rules, and individuals customize within those rules

The designer is similar to a software programmer
The designer decides which attributes (e.g., materials, geometries, or size) are fixed or variable, and the relationship between these attributes?
Individuals design within the designer’s rules to produce one of many possible outcomes.

Individuals can explore design options, design their own custom products without design expertise, and produce mass customization

Photo credit: Nervous System
Where does it fit for high volume?

FROM THE FORD WEBSITE (2014):

Ford’s 500,000th printed auto part is a prototype engine cover for the all-new Ford Mustang.

The next steps in Ford’s 3D printing strategy are auto industry firsts – mixed material applications, continuous 3D sand printing and direct metal printing.

One day, millions of car parts could be printed as quickly as newspapers and as easily as pushing a button on the office copy machine, saving months of development time and millions of dollars.

...An engineer would create a computer model of an intake manifold – the most complicated engine part – and wait about four months for one prototype at a cost of $500,000. With 3D printing, Ford can print the same part in four days, including multiple iterations and with no tooling limits – at a cost of $3,000.
A Few Leading Companies

STRATASYS LTD [SSYS]

ARCAM AB [AMAVF]

3-D SYS CORP [DDD]

EXONE CO [XONE]
Brief Review of AM/3D Printing Technologies
Relevant ASTM Standards

F2792 – 12a Standard Terminology for Additive Manufacturing Technologies

Additive Manufacturing Process Categories

Binder Jetting — a liquid bonding agent is selectively deposited to join powder materials.

Directed Energy Deposition — focused thermal energy is used to fuse materials by melting as they are being deposited.

Material Extrusion — material is selectively dispensed through a nozzle or orifice.

Material Jetting — droplets of build material are selectively deposited.

Powder Bed Fusion — thermal energy selectively fuses regions of a powder bed.

Sheet Lamination — sheets of material are bonded to form an object.

Vat Photopolymerization — liquid photopolymer in a vat is selectively cured by light-activated polymerization.
Other Names for 3D Printing Technologies

STEREOLITHOGRAPHY
FUSED-DEPOSITION-MODELING (FDM)
LASER MELTING (LM, SLM, SLS, DMLS)
ELECTRON BEAM MELTING (EBM)
BINDER JETTING (BJ)

MATERIAL JETTING (MJ, DOD)
(Inkjet print heads are used to jet melted wax materials onto a build platform)

PHOTOPOLYMER JETTING (POLYJET)
A few technology advances
Printed Copper Features
The Hi Current Electro-Mechanical Interface

THE Problem

50 µm thick GaN

Source Terminal (Cu)

Source

Drain
Progressing Toward Structured Metal (Cu, Al)

- Fine vertical metal columns are used to provide electrical and thermal conduction with stress management.
- Development of direct printed metals are being developed.

Sintered Alumina Impeller

• Ainsley C, Reis N, Derby B (2002) Freeform fabrication by controlled droplet deposition of powder filled melts.
• Example 3D Micromac part made from aluminum oxide powders (courtesy Laserinstitut Mittelsachsen e.V.)
AM Materials for Power Module Housings

We’re Getting Closer

A comparison of AM materials and traditional housing material is given based on the Heat Deflection Temperature (HDT) rating versus Tensile Strength. Traditional power module housings are typically cast with materials such as:

- Thermoset allyls/epoxy
- Diallyl phthalate (DAP)
- Thermoplastic polyester
- Polybutylene terephthalates (PBT)
Present Advances Are In Use of Multi-Materials

Voxel8 Named Top 9 Innovation at CES’15

NCSU-PREES Lab development

- Complete SiC Switch & Diode with top-side gate drive.
- Completed in two weeks
An SiC-based Traction Inverter (ORNL)

- Optimized inverter heat sink, allowing heat transfer throughout the unit.
 - This allowed lower-temperature components closer to high-temperature devices to reduce electrical losses, volume and mass of the package.

- Also, incorporates several small capacitors in parallel with better cooling and lower cost compared to fewer, large and expensive “brick type” capacitors.

- First prototype is a liquid-cooled, all-silicon carbide, 30kW traction inverter, with 50% printed parts.
 - Initial evaluations confirmed an efficiency of nearly 99 percent and setting the stage for building an inverter using entirely additive manufacturing techniques.

“New ORNL electric vehicle technology packs more punch in smaller package,” M. Chinthavali, Oak Ridge, Tenn., 14 Oct 2014
Summary

• The vision is strengthening for high volume (e.g. automotive) manufacturing in rapid prototyping and ‘form/fit/-AND-function’.
• The technology in Additive Manufacturing (3D Printing) for power electronics is continuing to grow, though not necessarily providing growth in the financial sector.
• Primary movers in 3D for power electronics will use multiple materials for integrating control and drive into power stages.
• A large improvement in Thermal Management has been demonstrated in printed heat exchangers by Oak Ridge Labs.
• 3D printing of subassemblies and components is helping to define the boundaries for near term adoption.
• A new university-housed power electronics packaging resource is not complete.
QUESTIONS???

Prof. Douglas C Hopkins, Ph.D.
Mr. Haotao KE
Laboratory for Research in Electronic Energy Packaging
North Carolina State University
1791 Varsity Drive, Raleigh NC 27518
DCHopkins@NCSU.Edu