Significant Developments and Trends in 3D Packaging with Focus on Embedded Substrate Technologies

Presented by PSMA Packaging Committee Brian Narveson and Ernie Parker, Co-Chairmen



# **Technology Report Commissioned**

- Why: Phase 1 Technology Report on 3D Power Packaging determined the power industry was interested in and beginning to manufacture Embedded Substrate power products
- Methodology: Ltec Corporation commissioned to create Technology Report:
  - Researched 740 published articles from industry, government and academia
  - Interviewed 30 Industry and Academic Experts
  - Attended 10 trade shows, conferences and seminars
- Purpose: To determine the availability of imbedded substrate technology usable by the Power Industry





# What is 3D Power Packaging

- Power supply products derived from the use of the z axis
- Incorporation of a variety of technologies to reduce footprint
- Solutions that increase power density (W/cm<sup>3</sup>)
- Manufacturing solutions that can print or construct interconnects or circuit layers



## What is Embedded Substrate Technology

- A 3D Embedded Power Module is a "systems that use a combination of at least one controller/driver IC, at least one active component in the power train, and associated interconnect means, embedded in a single package."
- Component embedding is "the inclusion of at least one active or passive electrical component within the top and bottom conductive layers of a substrate."
- A *substrate* is defined for this study as "a planar structure having multiple conductive and insulating layers."





## **Embedded Power Market Drivers**

- Digital functionality and power consumption increasing at a rate of "More than Moore"
  - CMOS has hit the wall, transistor efficiency is not increasing, and processor clock speeds are stagnating.
  - Advanced deep submicron semiconductor technology has hit a cost barrier
  - Barrier overcome with a paradigm shift in digital semiconductor packaging
  - Leading technologies are wafer thinning, through-silicon vias (TSV) and 2.5D and 3D integration
  - Power requirements increasing 2 to 5 times, within the same footprint, in one generation
- Power density and efficiency improvement with wide gallium-nitride (GaN), silicon-carbide (SiC), and gallium-arsenic (GaAs) are facing a "construction barrier"
  - Optimum performance can only be achieved with packaging free of bond wires
  - Embedded substrate technology is a disruptive technology that can lead to large increases in power density and efficiency



# Why is Embedded 3D Packaging Important

• What you told us: Motivation for using embedded packaging.



1985

% of Available Score

## At what Power Levels are you Interested in Embedded 3D Packaging

• What you told us:



1985

## **Technology Areas Studied**

- PCB's and Inorganic Substrates
- High Temperature Die Attach, High-lead Solder Substitution
- Passives
  - -Resistors
  - -Capacitors
  - -Magnetics
- Interposers
- Packaging Technologies
- Thermal Management
- Additive Manufacturing
- The report is 10 Chapters, 336 pages, with 394 Publications cited and 172 links provided

## **Benefits of Embedded Substrate Technology**

- Performance
- Reliability
- Ease of use
- Solution size
- Thermal management
- EMI shielding
- Reduced need for product-specific tooling
- Reduced need for additional packaging
- Fast time to market
- Cost?



## Standards for Embedded Substrate Technology

- Substrates and Components
  - IPC-2316: Design Guide for Embedded Passive Device Printed Boards
  - IPC-4811: Specification for Embedded Passive Device Resistor Materials for Rigid and Multilayer Printed Boards
  - IPC-4821: Specification for Embedded Passive Device Capacitor Materials for Rigid and Multilayer Printed Boards.
  - IPC-4101: Specification for Base Materials for Rigid and Multilayer Printed Boards
  - IPC-6012: Qualification and Performance Specification for Rigid Printed Boards
  - IPC-7092: Design and Assembly Process Implementation for Embedded Components (being written)
  - JCPA EB01-2013: Parts Built-in Electronic Circuit Board (Component Built-in Board) Data Format Design Guide – 2nd Edition

1985

 JPCA – EB02-2013: Standard on Device Embedded Substrate Terminology / Reliability / Test / Design Guide 4th Edition

# Examples of Embedded Technology



## AT&S Embedded Component Packaging (ECP<sup>™</sup>) Process Flow



## GaN devices of GaN Systems Inc. embedded in AT&S (ECP<sup>™</sup>) process



#### **TDK SESUB Process**



## **General Electric's Power Overlay Technology**

| IGBT DIODE DRIVER  |                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | ePOL                                                                            | WPOL                                                                                                                                                                                                | POL-MCM                                                                                                                                                                                   | POL-kW                                                                                                                                            |
| DESCRIPTION        | Low-cost embedded<br>package leveraging high<br>volume PCB technologies         | Fanout WLP using GE POL<br>and component packaging<br>technologies                                                                                                                                  | MCM SIP & integrated<br>passive SMT or leaded<br>conectors with integrated<br>DBC for thermals                                                                                            | Ultra high power module<br>with leaded connectors<br>and advanced thermal<br>management                                                           |
| FEATURES, BENEFITS | Low I/O <300 single and<br>SIP applications, with min.<br>L/S 25/25um, 30+ Volt | Low to medium I/O, 400<br>single & MCM applications<br>with min. L/S 10/10um<br>30+ Volt<br>- Large sized POL frame<br>processing, enabling<br>excellent routing<br>capability<br>- Ultra thin, low | Medium Voltage ,1200V<br>- Multiple pwr devices and<br>ICs (10+)<br>- Multiple passives (30+)<br>- Low parasitics<br>- Heterogeneous die<br>integration combining<br>both power and logic | Higher power<br>1200V+<br>- Lowest possible parasitics<br>fast switching, low losses<br>- Double sided cooling,<br>superior thermal<br>management |
| APPLICATIONS       | Mobile, computing,<br>telecom<br>- Wireless<br>- RF FEM<br>- Power management   | Mobile, computing,<br>telecom<br>- Wireless<br>- RF FEM<br>- power management                                                                                                                       | Computing, telecom,<br>industrial<br>- DC-DC converter<br>- Intelligent power<br>modules                                                                                                  | Automotive, aerospace,<br>- Motor drives<br>- Renewables<br>- High power conversion                                                               |



## Infineon's DrBlade<sup>™</sup> 2 Package



#### Schweizer's P<sup>2</sup>-PAK approach





#### **Semikron's Sintered SKiN™ PROCESS**



## Shinko Electric's Molded Core Embedded Package (MceP<sup>®</sup>)



## **Embedded Components**



## **Component Types and Processes**



#### **Challenges**

- Electrical Test
- Yield
- Who owns the failure
- How do share the losses





- The digital world is going 3D to increase capability in the same footprint
- Digital 3D will greatly increase the need for power but not increase the available space to implement it
- Embedded Substrate technology is a viable path to increase power density
- Multiple substrate and semiconductor technologies are available at many power levels
- Both formed and inserted components are available from multiple suppliers
- Multiple power manufactures are shipping product utilizing embedded technology
- Less than 5% of the material in the report has been presented. Contact PSMA to find out how to get a copy.

# Next Step?: Phase 3

- The Epilog of the Phase 2 report and recommendations in section 6.5.2 of the Phase 1 report recommend the "commissioning an embedded PSU demonstration project"
- The PSMA Packaging committee will be evaluating the feasibility of such a project over the next few months
- Please contact Brian Narveson or Ernie Parker the committee Cochairs if you are interested in participating



Proposed Schematic diagram of the demonstration Power SiP's



0110010

#### **Thank You**

PIIIQ 30 years 1985-2015