Significant Developments and Trends in 3D Packaging with Focus on Embedded Substrate Technologies

Presented by
PSMA Packaging Committee
Brian Narveson and Ernie Parker, Co-Chairmen
Technology Report Commissioned

• Why: Phase 1 Technology Report on 3D Power Packaging determined the power industry was interested in and beginning to manufacture Embedded Substrate power products

• Methodology: Ltec Corporation commissioned to create Technology Report:
 – Researched 740 published articles from industry, government and academia
 – Interviewed 30 Industry and Academic Experts
 – Attended 10 trade shows, conferences and seminars

• Purpose: To determine the availability of imbedded substrate technology usable by the Power Industry
What is 3D Power Packaging

- Power supply products derived from the use of the z axis
- Incorporation of a variety of technologies to reduce footprint
- Solutions that increase power density (W/cm3)
- Manufacturing solutions that can print or construct interconnects or circuit layers

Embedding Actives or Passives in Substrate
What is Embedded Substrate Technology

- A *3D Embedded Power Module* is a “systems that use a combination of at least one controller/driver IC, at least one active component in the power train, and associated interconnect means, embedded in a single package.”
- *Component embedding* is “the inclusion of at least one active or passive electrical component within the top and bottom conductive layers of a substrate.”
- *A substrate* is defined for this study as “a planar structure having multiple conductive and insulating layers.”

Source: TDK-EPC Corp
Embedded Power Market Drivers

- Digital functionality and power consumption increasing at a rate of “More than Moore”
 - CMOS has hit the wall, transistor efficiency is not increasing, and processor clock speeds are stagnating.
 - Advanced deep submicron semiconductor technology has hit a cost barrier
 - Barrier overcome with a paradigm shift in digital semiconductor packaging
 - Leading technologies are wafer thinning, through-silicon vias (TSV) and 2.5D and 3D integration
 - Power requirements increasing 2 to 5 times, within the same footprint, in one generation

- Power density and efficiency improvement with wide gallium-nitride (GaN), silicon-carbide (SiC), and gallium-arsenic (GaAs) are facing a “construction barrier”
 - Optimum performance can only be achieved with packaging free of bond wires
 - Embedded substrate technology is a disruptive technology that can lead to large increases in power density and efficiency
Why is Embedded 3D Packaging Important

- What you told us: Motivation for using embedded packaging.

<table>
<thead>
<tr>
<th>Feature</th>
<th>% of Available Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Size</td>
<td>65%</td>
</tr>
<tr>
<td>Improved Performance</td>
<td>60%</td>
</tr>
<tr>
<td>Thermal Management</td>
<td>55%</td>
</tr>
<tr>
<td>Reduced Packaging</td>
<td>50%</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>45%</td>
</tr>
<tr>
<td>Reduce Overall Cost</td>
<td>40%</td>
</tr>
<tr>
<td>EMI Shielding</td>
<td>35%</td>
</tr>
</tbody>
</table>

% of Available Score
At what Power Levels are you Interested in Embedded 3D Packaging

- What you told us:

![Bar Chart]

- Above 1000 Watts
- 200-1000 Watts
- 50-200 Watts
- 1-50 Watts
- < 1 Watt
Technology Areas Studied

• **PCB’s and Inorganic Substrates**
• **High Temperature Die Attach, High-lead Solder Substitution**
• **Passives**
 – *Resistors*
 – *Capacitors*
 – *Magnetics*
• **Interposers**
• **Packaging Technologies**
• **Thermal Management**
• **Additive Manufacturing**
• The report is 10 Chapters, 336 pages, with 394 Publications cited and 172 links provided
Benefits of Embedded Substrate Technology

• Performance
• Reliability
• Ease of use
• Solution size
• Thermal management
• EMI shielding
• Reduced need for product-specific tooling
• Reduced need for additional packaging
• Fast time to market
• Cost?
Standards for Embedded Substrate Technology

- **Substrates and Components**
 - **IPC-2316**: Design Guide for Embedded Passive Device Printed Boards
 - **IPC-4811**: Specification for Embedded Passive Device Resistor Materials for Rigid and Multilayer Printed Boards
 - **IPC-4101**: Specification for Base Materials for Rigid and Multilayer Printed Boards
 - **IPC-6012**: Qualification and Performance Specification for Rigid Printed Boards
 - **IPC-7092**: Design and Assembly Process Implementation for Embedded Components (being written)
Examples of Embedded Technology
GaN devices of GaN Systems Inc. embedded in AT&S (ECP™) process
TDK SESUB Process

Source: TDK-EPC Corp
General Electric’s Power Overlay Technology

<table>
<thead>
<tr>
<th></th>
<th>ePOL</th>
<th>WPOL</th>
<th>POL-MCM</th>
<th>POL-kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>Low-cost embedded package leveraging high volume PCB technologies</td>
<td>Fanout WLP using GE POL and component packaging technologies</td>
<td>MCM SIP & integrated passive SMT or leaded connectors with integrated DBC for thermals</td>
<td>Ultra high power module with leaded connectors and advanced thermal management</td>
</tr>
<tr>
<td>FEATURES, BENEFITS</td>
<td>Low I/O <300 single and SIP applications, with min. L/S 25/25um, 30+ Volt</td>
<td>Low to medium I/O, 400 single & MCM applications with min. L/S 10/10um 30+ Volt</td>
<td>Medium Voltage, 1200V - Multiple pwr devices and ICs (10+) - Multiple passives (30+) - Low parasitics - Heterogeneous die integration combining both power and logic</td>
<td>Higher power 1200V+ - Lowest possible parasitics fast switching, low losses - Double sided cooling, superior thermal management</td>
</tr>
<tr>
<td>APPLICATIONS</td>
<td>Mobile, computing, telecom - Wireless - RF FEM - Power management</td>
<td>Mobile, computing, telecom - Wireless - RF FEM - power management</td>
<td>Computing, telecom, industrial - DC-DC converter - Intelligent power modules</td>
<td>Automotive, aerospace, - Motor drives - Renewables - High power conversion</td>
</tr>
</tbody>
</table>
Infineon’s DrBlade™ 2 Package
Schweizer’s P^2-PAK approach

p^2 Pack® module assembly with logic PCB
Semikron’s Sintered SKiN™ PROCESS

Power Module with 3 Sintered Joints
Shinko Electric’s Molded Core Embedded Package (MceP®)
Embedded Components

Formed Passives
- Formed Resistors
 - THFR
 - TFR
- Formed Capacitors
- Formed Inductors

Inserted Passives
- Inserted Resistors
- Inserted Capacitors
- Inserted Inductors

Active Devices
- Wirebonded Semiconductor Die
- Bumped Semiconductor Die
- Semiconductor Die with Cu Pillars
- Semiconductor Die with Cu Pads
- Encapsulated Semiconductor
Component Types and Processes

Example of an embedded assembly Source: IPC International Technology Roadmap
Challenges

- Electrical Test
- Yield
- Who owns the failure
- How do share the losses
Summary

• The digital world is going 3D to increase capability in the same footprint

• Digital 3D will greatly increase the need for power but not increase the available space to implement it

• Embedded Substrate technology is a viable path to increase power density

• Multiple substrate and semiconductor technologies are available at many power levels

• Both formed and inserted components are available from multiple suppliers

• Multiple power manufactures are shipping product utilizing embedded technology

• Less than 5% of the material in the report has been presented. Contact PSMA to find out how to get a copy.
Next Step?: Phase 3

- The Epilog of the Phase 2 report and recommendations in section 6.5.2 of the Phase 1 report recommend the “commissioning an embedded PSU demonstration project”
- The PSMA Packaging committee will be evaluating the feasibility of such a project over the next few months
- Please contact Brian Narveson or Ernie Parker the committee Co-chairs if you are interested in participating

Proposed Schematic diagram of the demonstration Power SiP’s
Thank You