

Emerging high-performance and low-cost power packaging solutions with nanoscale capacitors and inductors

P. M. Raj, Himani Sharma, Vanessa Smet and Rao R. Tummala 3D Systems Packaging Research Center, Georgia Institute of Technology, Atlanta, USA

> Matt Roming and Saumya Gandhi + - Texas Instruments, 13020 TI Blvd, Dallas, TX 75243

Naomi Lollis and Mitch Weaver # A.V.X. Corporation, One AVX Blvd, Fountain Inn, SC 29644 Other Collaborators: ^ - H.C.Starck GmbH, Im Schleeke 78-91, 38642 Goslar/Germany & Heraeus Inc., Leverkusen, Germany.

GT-PRC is innovating power packaging technologies with advanced components and 3D integration,

and also creating an industry ecosystem of material suppliers, component manufacturers and end-users:

- Capacitors in consumer power modules:
 - Silicon-integrated nanoscale tantalum capacitors
- High-temperature and high-voltage capacitors with:
 - Porous copper electrodes
 - Nanoscale inorganic organic hybrid dielectrics
- Capacitors and inductors in integrated voltage regulators:
 - Low-cost polymer nanomagnetic inductors
 - Panel-scale inductor and capacitor integration
- Shielding:
 - Nanolayered structures for performance beyond copper

Packaging R&D at GT-PRC

Prof. Rao R. Tummala

Why Collaborate With Georgia Tech PRC

- No. 1 Academic Leader in IC & Systems Packaging
- Technical Vision Consistent with Market Needs
- Co-development of Panel-based Glass Packaging with 50 Global Researchers, Developers, Manufacturers and users
- Explore and Develop Advanced Systems Packaging Technologies Beyond Industry's 3-year Horizon
- Seamless from R&D, Prototype, and Tech Transfer Enabling Commercialization
- Track Record of Technology Breakthroughs
- Only 300mm Cleanroom Panel Facility in the Academic World
- > 50 Person Co-development Team: Full-time Researchers, Manufacturing Industry Partners, Graduate Engineers, Faculty and On-campus Industry Engineers
- Leverage: \$8M/100k

Global Industry Partners in Co-development

NORTH AMERICA	EUROPE		ASIA		JAPAN
Corning – Glass	HC Starck – Capacito	ors	Orbotech – Metrolo	gy	Ajinomoto – Dry Film
Dow Chemical – Polymers	Schott – Glass		PacTech – Assemb	ly	Asahi Glass – Glass
Advantech – Deposition	Atotech – Plating				JSR – Low-loss Polymer
Coherent – Laser	Suss – Laser Via		CHINA		Nitto Denko – Magnetics
ESI – Laser	Xyztec – Assembly		JCET – Bumping		Panasonic – Low-Ioss Polymer
K&S – TCB Bonder	TDK-Epcos – RF				Taiyo Ink – Photopolymer
MKS – Plasma Etching	Valeo – ADAS		KOREA		TOK – Photopolymer
Rudolph – Lithography	2	2	Gigalane – RF		Asahi Glass – TPV
SavanSys – Cost Model					Disco – Dicing
Tango – PVD Tools			TAIWAN		Hitachi Metals – 2.5D
Veeco – Cleaning			Unimicron – 2.5D		NGK/NTK – 2.5D
QualiTau – Assembly			TSMC – User		Shinko – 2.5D
AMD – 2.5D					Namics – Underfill
AVX – Passives					WALTS – Substrate
GlobalFoundries					Murata – RF
Intel – Digital					
Johnson Battery – User					
Qualcomm – 5G, Fan-out, RF					
TE – Opto					
TI – Passives					
Materials	Tools	Substr	rates	Assembly	Users
5 L Georgia Tech PRC		Prof Rao R	Tummala		

Technology Trends and Drivers

- Higher bus voltage to suppress losses
- Integrated power conversion with the load:
 - Suppress I² R losses
 - Minimize the need for decoupling capacitors
- Integration of storage elements should not offset the benefits or interconnection losses
- Better Power distribution network designs

Large-Area Capacitor and Inductor Integration

- Both capacitors are inductors are made as large-area free-standing films
 - Can be pre-tested for yield and performance
- Laminated onto substrate or wafer
- Or diced into IPDs and embedded or surface-assembled

Glass Panel Capacitor and Inductor Integration

Embedded power capacitor layer

Slide 8

Embedded power inductor layer

- Glass to support high-density fine-line wiring on large 510 x 510 panel manufacturing
- Currently ongoing, in collaboration with component manufacturers and end-user companies

Capacitors in Consumer Power Modules

Silicon-integrated nanoscale tantalum capacitors

Slide 9

Capacitor Integration in Consumer Power Modules

Discrete power module

Integrated power module

Bulky Ta Vs Ta Film Capacitors

Thickness: !	500 microns	 Thickness: 75 microns
• 200 micron c	onducting path •	 50 micron conducting path
 CP/Carbon/S Molded in lea (extra pkg volume) 	ilver paste ad-frame olume)	 Minimal interfaces; Direct metallization of CP with Cu/Au (Minimal packaging volume)
• 100 milliohm	s x microfarad	 20-50 milliohms x microfarad
• 1-5 MHz	•	• >10 MHz

Competitiveness of GT capacitors

Parameters	Si deep trench	Discrete MLCC	Foil Capacitors
Component thickness (µm)	~ 200-300	200	75
Capacitance (µF/mm ²)	1	2-3	1
Frequency (MHz)	-	150	1 - 150
Leakage current (μ A/ μ F)	0.1	0.1	0.1
			Stermore

Georgialnatitute

Capacitor Integration scheme

Demo. of Capacitor Integration

CONFIDENTIAL

Slide 15

Capacitor Reliability

- Capacitance response to frequency similar before 80 kA-8V and after exposure to elevated temperatures and 200 nm passivation moisture
- Improved ESR after testing

Slide 16

· Near-hermetic seal that removes need for casing

Manufacturing Ecosystem for Silicon-Integrated Foil Capacitors

High-temperature and high-voltage capacitors with nanoscale hybrid dielectrics

Georgialnstitute of Technology

High-Temperature and High-Voltage Capacitors

Safron's olymer film capacitors

Operating voltage	Capacitance	Case-size (in mm)
400 V	120µF	Diameter: ϕ_{25} mm Length: 30 mm
400 V	68µF	Diameter: $\phi 20$ Length: 30 mm

T BC

Electrolytic caps Vishay

700 V; 625 A current; 68 mm x 34 mm x 30 mm

AMS' metallized polymer film capacitors

EPCOS: MLCCs with PLZT 11 microfarad/cc; 350 V

Theoretical versus Achieved Volumetric Density for 450 V Applications

Technology Gap (between current status and theoretically achievable)

Thin Planar HV and HT Capacitors

Porous copper Electrode

Conformal counter electrode

8-9 microfarad/cm³ 450 V 85-115 C

- Porous copper electrodes
- Inorganic-organic hybrid dielectric
 - Permittivity of 20
 - **BDV of 300 V/micron**
- Layering with high thermal conductivity adhesives
- High thermal-stability adhesives
- Vias and metallization
- Solder termination with through-vias
- 3D stacking for scaling up in capacitance

Inorganic-Organic Hybrid Nanodielectrics (Conformally coated on porous copper electrodes)

Hybrid inorganic-organic dielectric with high permittivity and BDV

- Temperature stability of 300°C
- Permittivity ~ 20 and high breakdown strength
- Extractable energy density of 40 J/cm3 before packaging

CONFIDENTIAL

Capacitors and Inductors in Integrated Voltage Regulators

Panel-scale integration

Slide 23

Competitiveness of GT Embedded Inductors

	Air core	Sputtered Thinfilm	Magnetic Composites	Sputtered films as glass IPDs
L/R _{DC} (nH/mΩ)	0.20	0.20	~20	5-10
AC losses (% of total loss)	<1%	<1%	<1%	<1%
Current handling (A/mm ²)	>1	1-2	1-2	1-2
		Soc 1 Soc 2		
Slide 24				Georgialnstitute of Technology

Advanced Magnetic Substrates

Sampla		Frequency[MHz]		
Samp	Sample		50	100
Sheet A	μ'	182	93	70
	μ"	53	60	51
Sheet B	μ'	141	85	64
	μ"	15	50	44
Sheet C	μ'	92	70	49
	μ"	3	35	31
Sheet D	μ'	9	9	9
	μ"	<0.2	<0.2	0.3

Nitto Denko Corporation

Nanomagnetic High-Sat, Soft Magnetic Core Material

- Material sample thickness = >40um
- High deposition rate high throughput and low cost
- IC or glass substrate- compatible
- Deposition thickness capability up to 50um demonstrated
- μ_r= 200, Bsat= 1.3 T, Q @ 5 MHz>90, Q@ 20 MHz=30
- 0.5 microhenries; Isat of 2 Amp demonstrated on 6 inch;
- Toroid and solenoid inductors demonstrated

Inductors IPDs with Nanomagnetic Films on 50 microns glass

Slide 27

Georgia Institute of Technology

CONFIDENTIAL

LC-Embedded Power Substrate

- Pre-manufactured capacitors fan-out embedded in organic laminate panels
- Magnetic components as large-area substrates
- Vertical through-via interconnections
- Ability to support redistribution layers on the top for routing
- Fine-pitch processor or other logic ICs on the topic

Component- and Package-Level Shielding

Parameter	Objectives	Illustration borrowed from Murat
Shielding	60 - 120 dB	Digital circuit : Noise generation
Frequency	1 MHz – 40 GHz	
Distance of separation	0.1 – 10 mm	Wireless circuit : Noise mixes in
Shield metal thickness	~5-50 um	The performance of receiving radio waves from base stations is impaired

- Component-level shielding:
- Plated copper
- Multilayered metallic structures
- External shielding:
- Spray-coated, plated, sputtered

Materials beyond copper are needed to shield magnetic fields

Better EMI isolation Over Cu with Cu-Magnetic structures

GT-PRC is innovating power packaging technologies and also creating an industry ecosystem of material suppliers, component manufacturers and end-users:

- Capacitors in consumer power modules:
 - Silicon-integrated nanoscale tantalum capacitors
- High-temperature and high-voltage capacitors with:
 - Porous copper electrodes
 - Nanoscale inorganic organic hybrid dielectrics
- Inductors and capacitors in integrated voltage regulators:
 - Low-cost polymer nanocomposite inductors
 - Panel-scale inductor and capacitor integration
- Integrated shielding at component and package-level
 - Materials beyond copper

