

Integrated Magnetics for PwrSiP and PwrSoc

Paul McCloskey

paul.mccloskey@tyndall.ie

- Evolution of Power Converters
- Integrated Magnetic Structures
- Magnetic core Losses
- Magnetic materials
- Example Devices
- Research Challenges
- Summary

Buck Converter

- $V_{\text{out}} \sim V_{\text{in}} D$
- **Ripple current controlled** by *L*

$$\Delta i = (V_{\rm in} - V_{\rm trans} - V_{\rm out}) D / (L f)$$

Where: D = duty cycle, L = inductance and f = switching frequency

- For small L need high f
- Switching loss at high *f* is improving!

Schematic for a buck converter [1]

[1] Daycounter Inc. Engineering Services, "Buck Converter Design Equations", http://www.daycounter.com

Evolution of Power Converters

IMPACT FROM EXCELLENCE

Evolution of Power Converters

PwrSoC

Inductor fabricated on Si die, load may also be integrated

2.5D stacked multi-phase Buck from IBM (2013)

Evolution of Power Converters

Cian O' Mathuna et al. "Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)", IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 2012

Spiral: HKUST

IMPACT FROM

Integrated Magnetic Structures

Þ

• Stripline: Intel, etc.

<u>от пореда и поре Пореда и поре</u>

Toroid: Georgia Tech, etc.

2 mm

Magnetic cores wrap around windings

• Racetrack: Tyndall, Dartmouth, IBM, etc.

Windings wrap around magnetic core Solenoid: ADI, Stanford, etc.

Magnetic Device - Loss Breakdown

Losses within a magnetic device

- DC conduction loss in windings
- AC conduction loss in windings
- Hysteresis losses in core
- Eddy current losses in core
- Anomalous losses in core

Determined by

- Device structure
- Material properties
- Process constraints

Magnetic Material - Losses

Hysteresis Loss

- Arise from domain wall motion
- Area within *B-H* loop

 $- P_{hysteresis} = 4. f.B_{ac}^2 H_c/B_{sat}$

Where; H_c = coercivity, B= Magnetisation, H = Magnetising field, f = frequency

Eddy Current Loss

- Eddy currents resist change in magnetic field
- Reduced by keeping thickness below 1 or 2 skin depths
- Skin depth, $\delta = (2\rho / \omega \mu_r)^{0.5}$

Where; ρ = resistivity, ω = angular frequency (= $2\pi f$)

Anomalous Loss

Inconsistencies in domain wall motion

- Often calculated as; $P_{total} = P_{hysteresis} + P_{eddy current} + P_{anomalous}$ MPACT FROM EXCELLENCE

Magnetic Material, Crystalline - Plated Ni₄₅Fe₅₅

Saturation, B _s	1.44 T
Coercivity, H _c	80 A/m
Resistivity, ρ	45 μΩ cm
Permeability, μ_r	300

Design impact

IMPACI FROM

EXCELLENCE

- Inductance, $L = (\mu_0 \,\mu_r N^2 A_c) / I_c$
- Skin depth, $\delta = (2\rho/\omega\mu_r)^{0.5}$

 μ_0 = permeability of free space, μ_r = relative permeability, N = number of turns, A_c = CSA of core, I_c = length of core. ρ = resistivity, ω = angular frequency (= $2\pi f$)

EXCELLENCE

Magnetic Material, Amorphous - Plated Cobalt Phosphorous (Co-P)

Requires Pulse Reverse Plating [1] to avoid out of plane anisotropy

- Co-P removed during reverse cycle
- Co removed preferentially from surface => high P layer

Properties [2]

- $B_{sat} = 0.9 \text{ to } 1.2\text{T}$
- $H_c < 40 \text{ Am}^{-1}$ with a minimum value of 8 Am⁻¹
- μ_r ~ 700 holding out to a maximum 103 MHz
- $116 < \rho < 136 \mu\Omega$ cm

[1] J.M. Riveiro et al, IEEE Trans on Magnetics, Vol. MAG-17, No. 6, November 1981

[2] P. McCloskey et al, "High-frequency nanostructured magnetic materials for integrated inductors", JMMM, Vol 320, Issue 20, p 2509-2512
[3] P. McCloskey et al, "Electrodeposited amorphous Co-P based alloy with improved thermal stability", JMMM, Vol 322, Issue 9-12, p. 1536-1539

Magnetic Material, Amorphous Sputtered

• Increasing thickness- lower coercivity (<0.1 Oe)

Magnetic Materials Development

Device 1 - Integrated Transformer for Isolated Power and Signal Transfer

iCoupler

ISOFACE[™] PowerSiP

EXCELLENCE

A lot of advantages compared to optocoupler

- No degradation over time
- Gain reliability
- High temperature range ... 150°C
- Very fast transmission (10 ... 100MHz)
- Low power consumption

Commercial products

Measured Microtransformer Performance

	Commercial Air	Tyndall Gen1	Tyndall Gen2	
	Core			
Device Size	2mm ²	24mm ²	3mm ²	
Frequency	180MHz	10MHz	20MHz	
Inductance	8nH	440nH	240nH	
L Density	17nH/mm ²	18nH/mm ²	80nH/mm ²	
Coupling	0.85	0.93	0.97	
DC R	0.46 Ohms	0.5 Ohms	0.96 Ohms	
μT Effic.	70%	63%	78%	
Switch Effic.	<= 60%	80%	80%	
Overall Effic.	<= 40%	50%	63%	

*N. Wang et al, IEEE Trans. On Power Electronics (Nov 2014)- Tyndall-TI joint publication

Device 2 - Integrated coupled inductor

Institiúid Náisiú Dartmouth/Tyndall'0		Tyna	all'14			INTEL'11 Output Input "Winding" "Winding"	
Columbia/IBM/Du ke'12		L self (nH)	DCR (mΩ)	Foot print (mm ²)	Freq (MHz)	Convert Effic (%)	
ññññ	Dartmouth/ Tyndall'04	14	40	80	5	50	Columbia/IBM/Fe rric'13
	INTEL'11	25	14	2.8	>60	76	
	Columbia/ IBM/Ferric'12	7.4	480	10.9	100	71	
Hard Axis	Columbia/ IBM/Duke'13	12.5	270	2.5	>40		TTTT
	Tyndall/ Powerswipe' 15	35	155	2	100- 200	81 Expect!	
Cu	NUIG/Tyndall'15	23	71	5	20	55	

PowerSwipe Converter Specifications

Comparison single-phase and two-phase dc/dc converter

Inductor design	Freq. (MHz)	L (nH)	Coupling factor	Efficiency (magnetics)	Efficiency (IC)	Total efficiency
Single phase	200	33		95,5 %	87,4%	83%
<u>Coupled</u>	<u>100</u>	<u>45</u>	<u>~0.4</u>	<u>90%</u>	<u>90,4%</u>	<u>81%</u>
Coupled +Lout	100	35+21	>0.8	85.6% (90.25%·94.8%)	90,4%	77%

100 MHz coupled inductor- Prototypes

National Institute

Large Signal Characterization

Signal Generation

Measurement

Known Inductor (20nH)

Voltage measurement

Large signal generated
 i.e. up to to 0.7A DC + 0.3A ac

- Voltage and current waveforms
 measured
- Values of L an R_{ac} extracted
 Voltage measurement

DUT

100 MHz coupled inductor - Large Signal Characterization

Vout	lout	Rac	L-efficiency (est.)
1.2 V	280 mA	889mΩ	90.7%

- Conventional SMPS with discrete components => PwSiP => PwSoC
- Greater integration enabled by higher switching frequencies
- Range of magnetic structures: Spiral, Stripline, Racetrack, Toroid and Solenoid each with advantages and disadvantages
- Magnetic material includes: Crystalline, Amorphous and Nanocrystalline
- Example devices:
 - Microtransformer for isolated power and signal transfer
 - Integrated coupled inductor
- Research challenges: Design, Materials and Process

- Funding: European Union through FP7 for PowerSwipe and CarriCool, Enterprise Ireland, Science Foundation Ireland, Texas Instruments, Intel Corporation.
- Tyndall National Institute: Cian O'Mathuna, Santosh Kulkarni, Zoran Pavlovic, Ricky Anthony, Nicolas Cordero, Margaret Hegarty, Joe O'Brien, Declan Casey, James Rohan, Anne-Marie Kelleher, Graeme Maxwell.

European Union European Regional Development Fund

