

Challenges and Considerations for 3D Packaging of Self-Powered **IoT Devices**

APEC PSMA Packaging Industry Session

> **Mike Hayes** 28th March 2017 **Senior Program Manager ICT4EE**

michael.hayes@tyndall.ie

- Introduction
- Context and Motivation
- PSiP & PwrSoC Integration
- Relevance to Tyndall activities
- Partitioning
- Problems with Sensors
- Problems with Energy Harvesting Powered solutions
- Opportunities Examples (applications)
- How to Address Problems
- Summary & Conclusions

- Wireless Sensor Network (WSN) nodes are ultra low power IoT devices that wirelessly capture data.
- This is critical for applications including
 - Monitoring assets/devices/people/infrastructure
 - Sports, healthcare, environment, transportation
 - Energy & resource efficiency optimisation
- Market size 1 trillion sensors by 2025

- Tyndall has developed a modular platform, used for >50 applications
- Energy harvesting uses ambient energies as a power source
 - eliminates need for replacing batteries in sensors
 - (or at least extends battery life)

EXCELLENCE

Tyndall Introduction - IoT WSN Needs & Applications

National Institute Institiúid Náisiúnta

Context and Motivation

- Note the presentation title 'challenges and considerations', not 'solutions'
- Purpose is to create awareness and stimulate collaborative engagements
- IoT devices brings significant potential benefits for power electronics community
 - Components usage and technology drive
 - Enhanced monitoring of devices and systems
- My work is primarily electronics but need leading edge mechanical, packaging and system integration partners to successfully develop energy harvesting SYSTEMS to power smart sensors
 - Requires advanced technology from PSiP, PwrSoC* & other domains
 - Based on real life applications (sensor needs, working environments)

*PSiP - Power Supply in Package

PwrSoC - Power Supply on Chip

- Miniaturized IoT devices need miniaturized POWER SOURCE
- Leading technology examples (ref next slides)
 - PSiP:- embedding of power supplies (magnetics, switches, capacitors, etc.) in multi-chip modules/substrates
 - **PwrSoC**:- embedding onto Silicon
- Devices are already in development/some commercially available
 - TSMC already has standard processes for embedding magnetics
 - Companies such as IPDIA embedding storage devices, CMOS compatible
- Applications such as mobile phones and wearables driving such needs where size and form factor is critical
- Nanotechnologies, multi-modal modelling & additive manufacturing are all enablers
- Pushing for PSiP & PwrSoC to be extended to potentially include WSN & self-powered constituents

PSiP & PwrSoC integration - examples (2)*

* Ref PSMA stage 1 and 2 3D packaging reports for further details

Relevance to Tyndall -Energy Harvesting & Storage

Control **Power Management ICs & Circuits** Multi-source Self-start **High efficiency**

Storage Supercaps on Silicon **Flexible batteries** Micro-batteries Nanotube high density

Generation

Generators on silicon Wide bandwidth vibration (Electromagnetic & piezo) High density MEMS IC integrated highest efficiency TEG materials (thermoelectric)

Relevance to Tyndall -PSiP, WSN, System Integration

Embedded Magnetics

Making magnetics disappear in packages (PSiP) & onto ICs (PwrSoC)

Simulation

Physical/mechanical (VEH)

> Design/Deployment tool Circuits (discrete & CMOS)

WSN

System application optimised parts & devices e.g. Harmonise methodologies & specifications Compatibility:- Mfg. Process, Electrical, Packaging

Partitioning (1)

• IoT Solutions in the market partition in several ways.

e.g. chips that integrate

- uController + sensor I/F + RF
- uController sensor I/F+ RF + (some) PM
- Sensors + I/F + RF (e.g. some PIR & temp sensors)
- Multiple sensor types (e.g. Temp + Hum + CO2)
- A few offer embedded EH&S but limited ...
 - (performance, variety, protocols)

Also need to take into account

- Design of antenna
- Design of enclosure
- Power source/generator/transducer (impedance, voltage, no. of cycles.....)
- For most solutions users need to mix and match -> solution will be non-optimal, due to lack of expertise
- May also need to develop/use additional circuits for start up, power management, interface, battery back-up, etc.

Partitioning (2)

- Most commercial solutions with Energy Harvesting are basic, non-optimised & generic
- Emerging technology EH parts are mainly in proof of concept stage @ lower TRL and lack latest packaging technology integration
- We need
 - State of the art miniaturization and packaging technologies at device and system level
 - Modular solutions that can be easily scaled for diversity of needs (size, power, ambient energies, form factor...)
 - Easy application re-configuration with little expertise
 - Increased collaboration with packaging designers to embed latest technologies
 - Consideration by designers of materials, circuits, devices of packaging constraints and opportunities for real life applications

Problems with Sensors

- Need both 'protection' & 'exposure'
- Issue is well known to IoT world at present, e.g.
 WSN with mixed success
- Embed onto semiconductor (-style) packaging has helped
- But it is going to become more difficult

 If we embed further into the IoT device how do we 'expose' the sensor

Problems with Energy Harvesting powered solutions (1)

- Battery needs replacement with a much more complex device bringing new electronic, mechanical & interconnect challenges (ref next slide)
- Ambient energy sources need to be 'exposed' to energy source & yet 'embedded' near the load
- Ambient energy sources may sit in harsh environments
 - e.g. major temperature extremes, outdoor fouling, ingress, etc.
- Variation in placement strategies and accuracy of the packaged solution, how to ensure alignment with ambient energy (heat pulse, light, good thermal interface)
- Diminishing volumetric space available to squeeze in all of this for some apps (e.g. wearable, healthcare)

IOT device (WSN + PMIC +....)

Complex array of stuff to be integrated to replace function of battery

Opportunities Example (1) – indoor solar energy harvester

- Proof of concept available credit card (3D printed)
 - Temperature, light, humidity sensing
- PwrSoc & PSiP technologies can help realise opportunities
- Remember sensor + EH problems outlined in previous slides
 - (embed Vs exposure, harsh environments, aesthetics, etc.)

Opportunities

Add other Energy Harvesting (EH) sources

Add other sensors e.g. CO2, occupancy

Integrate the IoT device (e.g. WSN node)

Move from discrete to PMIC to improve efficiency & enable multi-source EH with Battery back up

Miniaturize magnetics around PMIC

Embed storage (harvesting cycles + battery backup)

Improve aesthetics and robustness of packaged IoT device

EXCELLENCE

Opportunities Example (2) - BEM integration

- BEM (building energy management) application of indoor solar EH
- Level of embedding/miniaturisation depends on size & form factor of IoT device

Desk mounted sensor – helps improve comfort and optimise energy use [2]

- Opportunity:- Embed more sensors, Battery back-up & PV
- Need to put PIR sensor in a different location (e.g. high on a wall) with embedded transceiver?
- PV may need to be flexible to fit (e.g. DSSC Dye Sensitised Solar Cells)

Opportunities Example (3) – wearable/implantable

- Lots of start-ups, concepts, etc. but not many mainstream products yet
 - Mainly because they do not produce enough <u>average</u> power
 - Solutions rely on a single type of ambient energy
 - Most commercial parts just use a battery and need frequent re-charge or have short use life (which is ok for some applications but not most)
- Wearable multisource PV/TEG/VEH* concept is attractive but....
 - Huge variation in ambient energies (levels and intermittency) and interfaces needed
 - How to expose align, exposure & aesthetically embed and interconnect
 - Major challenges to interconnect and package
 - If embedded there will be limitation , e.g. some battery chemistries not allowed, e.g. magnetic materials based generation (vibrational) materials not allowed for VEH (MRI compatibility)
- *TEG = thermoelectric, VEH = vibrational

Some wearable concepts

Smart patch

Eye/brain implants (need to get smaller!) [3]

Tyndall WSN for sports performance

GRASP

GRASP gait monitoring [4] (sports, rehabilitation)

Some attempts to self power

• PV wireless headphones: Exod UK start-up 2015 [5]

Wearable TEG: KAIST, 40mW @ wristband size

Tyndall transducer

- Implantable energy harvesting device to power pacemaker
 - EU MANPOWER project [6]
- Miniaturization, reliability & biocompatibility critical for many applications

- Concurrent system level optimisation engineering
 - Developers of transducers, storage, IoT devise, WSN all work together and design parts optimised for SYSTEM needs
 - Leverage from & guide state of the art packaging from materials to devise and systems
 - Bring in industrial designers early aesthetics, manufacturability, testability
 - Allow for variations in deployment (ambient energies, placement sensitivities)
- Use System Integration tools
 - Utilise multi-domain modelling e.g. PowerSWIPE (thermal, electrical, mech, EMI)
 - Utilise additive manufacturing early prototype, collaborative reviews of concepts
- Consider user experience early (where appropriate)
 - Unobtrusive, biocompatible
 - Wear and tear, etc.
 - Ease of repair, maintenance

Summary & Conclusions

- IoT market (1 trillion sensors by 2025) brings many opportunities to PSU industry
 - Components
 - Enhanced monitoring of devices and systems
- Challenges in embedding sensors in IoT devices intensifies as we miniaturise
- Further challenges when we attempt to integrate energy harvesting solutions
- PSiP & PwrSoC are key initiatives that must be more strongly linked to Energy Harvesting & WSN/IoT
- Closer collaboration needed within and between communities bring ecosystem together
- Think about system level optimisations carefully consider application needs
- Multi-domain modelling and additive manufacturing are very helpful tools

• 3D packaging technology collaboration is critical

Thank you!

Go raibh maith agaibh!

Come and see demo of tools and hardware at Energy Harvesting Industry Session Thurs 30th March IS16 room 4 8.30-11.30am

www.tyndall.ie

References

[1] http://www.powerswipe.eu/aboutus/

- [2] http://www.moeebius.eu/about-the-project (project hardware in development)
- [3] https://www.extremetech.com/extreme/182686-here-come-the-rice-grain-sized-brain-implants-stanford-

discovers-way-of-beaming-power-to-microimplants-deep-inside-your-body

[4] http://graspwt.com/

- [5] http://pubs.rsc.org/en/content/articlelanding/2014/ee/c4ee00242c#!divAbstract
- [6] http://www.themanpowerproject.eu/uploads/%28Public%29604360_MANpower_D1_1_

Specifications_Report_Final_Version.pdf

