

Development Challenges for DC-Link Capacitors for Wide Band Gap Semiconductor Applications

John Bultitude

KEMET Electronics Corporation 2835 Kemet Way Simpsonville, SC 29681 USA

KEMET Contributors: Lonnie Jones, Buli Xu, Jim Magee, Reggie Phillips, Peter Blais, Axel Schmidt, John McConnell, Galen Miller, Allen Templeton, George Haddox, Joshua Reid, Erik Reed, Nathan Reed, Javaid Qazi & Hector Nieves

Outline

- WBG Semiconductors
 - Background
 - Capacitor Needs
- Capacitor Types
 - Film Capacitors using Metallized Polypropylene
 - Ceramic Capacitors of Ni BME C0G MLCC
- MLCC Packaging
 - Transient Liquid Phase Sintering (TLPS) Technology
 - Leadless for Max. Cap. In given assembly area
- Summary

WBG Semiconductors

Background

- Gallium Nitride (GaN)
 - Volume production since the 1990's
 - RF
 - LED
- Silicon Carbide (SiC)
 - Commercial production since 2008
 - Power Inverters
 - Low Voltage Power Distribution
- Advantages over Silicon
 - More energy efficient
 - Less cooling
 - Miniaturization
- As WBG costs decrease more they will increasingly replace silicon mid and lower power applications in the future

Power Conversion Efficiency

	Si Based	WBG Based on GaN or SiC
DC to DC	85%	95%
AC to DC	85%	90%
DC to AC	96%	99%

Source: Mouser Electronics, L. Cuthbertson, 2016

Future Power Electronics

Semiconductor vs Power vs Frequency

Source: P. Friedrichs & M. Buschkuhle, Infineon AG, Energetica India, May/June 2016

WBG Capacitor Requirements

Power Converter Capacitors

System Overview:

Typical Capacitor Types:

How Much Capacitance Do We Need?

Example: DC Link for 400V with 10% Ripple

* Source: Prof. R. Kennel, Technical University Munich, Germany

How Much Capacitance Do We Need?

Example: DC Link for 650V with 10% Ripple

How Much Capacitance Do We Need?

Example: DC Link for 1200V with 10% Ripple

 Higher Frequencies, Higher Voltages & Lower Power requires less capacitance

How Much Capacitance Do We Need? Polypropylene Film to MLCC

- For WBG DC-Link Capacitors:
 - Lower capacitance required promotes miniaturization due to:
 - Increasing switching frequency
 - Higher voltages
- Lower capacitance is within the range of MLCC.
 - But these need must be:
 - Extremely reliable
 - Over-Temperature and Over-Voltage Capable
 - High current capable
 - Mechanically Robust

Power Film Technology (Metallized PP)

Effect of Frequency

Dissipation factor vs. frequency (Room temperature)

Increasing Frequency = Higher DF

Power Film Technology (Metallized PP)

Effect of Higher Temperature

- Higher Temperature
 - Voltage & Current Limitation
 - Shorter Life, Lower Reliability

MLCC Capacitor Development

Ni BME COG 3640 Case Size

		Ni BME COG 3640 Prototypes		
3640 L x W x TH 0.36" x 0.40" x 0.10" 9.1mm x 10.2mm x 2.5mm Volume = 0.23cm ³	Nominal Cap	0.22 μF	0.33 μF	0.47 μ F
	Capacitance (nF)	227	343	487
	DF (%)	0.0080	0.0117	0.0110
	IR @ 25°C (GΩ)	458	277	242
	IR @ 125°C (GΩ)	7.42	6.47	6.24

- Ni BME COG 3640 have:
 - Low DF ____

- High IR —
- Stable Capacitance at high temperatures & voltages

Ref. J. Bultitude et al; Proc. Intl. Symposium on 3D Power Electronics, NC State, June 13-15, 2016

Ni BME COG MLCC 3640 500V 150°C

Higher Frequency

Increasing Frequency = Higher DF but < Metallized PP

Ni BME COG MLCC 3640 500V 150°C

Reliability by Accelerated Testing

Electronic Components

*Ref. J. Bultitude et al; Proc. Intl. Symposium on 3D Power Electronics, NC State, June 13-15, 2016

Ni BME COG MLCC 3640 0.22µF 500V 150°C

ESR & Current Handling @ 150°C 100kHz

 Lower DF & ESR reduce the power dissipated

$$P=\frac{i^2d}{2\pi fC}=i^2R$$

P = power dissipated

i = current

- d = dissipation factor
- f = frequency
- **C** = capacitance
- **R = resistance**, **ESR**
- No failures after 1000hrs testing
 @ 150°C 15A_{RMS} 100kHz

$$\approx 75 \text{ A}_{\text{RMS}}/\mu\text{F} \text{ or } \approx 65 \text{ A}_{\text{RMS}}/\text{cm}^3$$

Ref. J. Bultitude et al; Proc. Intl. Symposium on 3D Power Electronics, NC State, June 13-15, 2016

MLCC Packaging

Different Assembly Options

- Surface Mounting*
 - High MOR with Board Flex > 3mm
 - 3640 pass AEC Q200 temp. cycle testing
- Embedding
- Leaded MLCC
 - Through-hole/Surface Mount/Press-fit
 - Lead to MLCC > 200°C HMP Pb-solder
- Transient Liquid Phase Sintering
 - Replace Solders in MLCC packaging

*Ref. J. Bultitude et al; Proc. Intl. Symposium on 3D Power Electronics, NC State, June 13-15, 2016

Transient Liquid Phase Sintering (TLPS)

Basic Technology & Types

What is TLPS?

- Low temperature reaction of low melting point metal or alloy with a high melting point metal or alloy to form a reacted metal matrix or alloy
- Forms a metallurgical bond between 2 surfaces

Low melting point

Heat

InAg TLPS

In/Ag

metal or alloy

High melting point

metalor alloy

Cu

Ref. J. Bultitude et al; MS&T 15, Columbus, OH, USA, October 5, 2015

Dense matrix of

reacted alloy

11

Transient Liquid Phase Sintering (TLPS)

Leaded & Leadless Case Size 2220 MLCC Performance

Leaded

 Improved High Temperature performance Vs. solders

TLPS Type MLCC	Temperature Cycling: -40C to +200C: Cycles				
Termination	250	500	750	1000	
In-Ag/Ni underplate	0/30	0/30	0/30	0/30	
In-Ag/Cu underplate	0/30	0/30	0/30	0/30	

US Patents 8,331,078B2, 8,902,565B2 & 9,472,342B2

Ref. J. McConnell et al; IMAPS 2016, Pasadena, CA, USA, October 13, 2016

Leadless

Pass 125°C Temp. Cycling

Leadless Stacks	i Sn P	lated	Termina	tion, CuSr	n TLPS	
Failures per Test Quantity						
harmal Cualas	44	17	600	1000	2000	

Thermal Cycles	117	500	1000	2000
Lot 1	0/40	0/40	0/40	0/40
Lot 2	0/40	0/40	0/40	0/40

High Shear Strength

Leadless Packaging 3640 0.22µF 500V MLCC

Form Factors & Materials

Leadless Packages of 3640 0.22µF 500V MLCC

- Higher Capacitance to $\approx 1 \mu F$
- Increased height of Leadless Stacks increases maximum inductance
- High Insulation Resistance to 200°C

Leadless Packages of 3640 0.22µF 500V MLCC

Performance

Leadless Packages of 3640 0.22 μF 500V MLCC

Surface Mounted Performance

- Board Flexure is > 3mm similar to MLCC
- No Failures 0/50 through 500 cycles -55 to +150°C

Leadless Packages of 4 X 3640 0.22µF 500V MLCC *Stack Orientation; Horizontal Vs. Vertical*

Leadless Packages of 4 X 3640 0.22 μF 500V MLCC

Electronic Components

Summary

- WBG requirements & increases in switching frequency change capacitor needs:
 - Smaller Values
 - High Voltage & High Current Capability
 - Reliable at High Temperatures
- BME Ni COG MLCC solutions have:
 - High reliability at high temperature & voltage
 - High ripple current capability
 - High MOR & flexure
- Transient Liquid Phase Sintering Technology can be used for:
 - Solder Replacement (TLPS is Pb-free)
 - Leadless Packaging to realize higher capacitance in a given pad size
 - Vertical Orientation has higher SRF, lower ESR and less ripple heating

