Reliability of Thermally Integrated 3D Power Packaging

F. Patrick McCluskey
CALCE/Dept. of Mechanical Engineering
University of Maryland, College Park, MD 20742
mcclupa@umd.edu
(301) 405-0279
Trends in Power Electronic Packaging

- Increasingly the key product differentiator is size, weight, power efficiency and cost (SWaP-C).
- Power Electronics are being used at
 - Increased load levels
 - With denser packaging schemes
 - In harsher environments
- Drive towards a fully integrated 3D power electronics module.
• Moving from 2D packaging of discrete components on a PWB to 2.5D – 3D stacked modules

• Examples are:
 — Power Supply on Chip (PSOC)
 — Power Supply in Package (PSIP)

• These packages contain embedded actives, embedded passives, embedded thermal management, and attachments.

• Additive manufacturing may be used for true 3D structures

• Physics-of-failure concepts allow reliable designs of future systems.
PPoF approach used to determine reliability.

- Estimate MTTF for each element failing by each failure mechanism.
- Using a fault tree analysis to see which components are in series.
- Probabilistic approaches to combine independent distributions for identical or non-identical parts failing due to identical or non-identical mechanisms.
From Wirebond ➔ Sintered Interconnect

“Traditional” Wirebond

- Chips interconnected with 125-375 μm diameter wire.
- Dice soldered to a thick metalized ceramic substrate (e.g. DBA, DBC)
- Most heat (>85%) dissipated from the back of the die through the substrate to the heat spreader.

Sintered Interconnect

- Chip bonded top and bottom with a permanent attach.
- Eliminates wirebond failures
- Supports double sided cooling
- Need high temperature attach robust against delamination and cracking

• High lead solder (e.g. Pb2Sn2.5Ag,PbSn5) has been a standard die attach.
• With the advent of RoHS, which required the removal of lead from most solder since 2006, the industry has moved to alternative attach materials that provide:
 – $T_m > 250^\circ C$
 – Excellent wettability
 – Toughness and reliability
 – Cost competitiveness
• These alternatives are grouped in three main categories
 – Brazes
 – Sintered Metal Powders (Copper, Silver)
 – Transient Liquid Phase Attachments
Sintered Interconnect

Reflow Attachments

<table>
<thead>
<tr>
<th>Solder</th>
<th>T_m</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-Ag Alloys</td>
<td>262°C</td>
<td>- Small elongation, brittle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Limited wetting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Low thermal conductivity</td>
</tr>
<tr>
<td>Au20Sn</td>
<td>280°C</td>
<td>- High process temp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High cost</td>
</tr>
<tr>
<td>Au12Ge</td>
<td>361°C</td>
<td></td>
</tr>
<tr>
<td>Au3.2Si</td>
<td>363°C</td>
<td></td>
</tr>
<tr>
<td>Zn6Al</td>
<td>381°C</td>
<td>- Complicated processing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Limited wetting</td>
</tr>
<tr>
<td>Zn5.8Ge</td>
<td>390°C</td>
<td>- High process temp</td>
</tr>
</tbody>
</table>

Sintered Silver

Combine moderate range processing temperatures (225°C - 275°C) with 30-40 MPa pressure to convert a silver powder paste into a porous solid joint. Order of magnitude better power cycling reliability than soldering.
Sintered Silver Attachment

- Advantages of Sintered Silver
 - Better thermal/electrical performance than solder: 2.5 – 12.5 µΩ-cm; 80-290 W/mK
 - Drop-in replacement for solder paste
 - Shear strength > 100 MPa; Modulus < 10 Gpa
 - Nanopowder versions can be done pressureless in reducing atmosphere
 - Potential for >15X improvement in heat transfer and greater reliability than solder.

- Disadvantages of Sintered Silver – Cost
 - Microflake versions require 30-40 MPa pressure
 - Best on Ag plated surfaces, Au requires high temperature, and Cu oxidizes
 - No self-alignment
 - Potential for silver migration
 - Toxicity of nanoparticles unknown
 - Prone to vertical cracking

Sintered Copper Attachment

- 5-20 μm Cu powder has been investigated at sintering temperatures of 350°C under 40 MPa pressure in open air.
- Requires initial oxide reduction step at 350°C in H₂
- Shear strength is 6-30 MPa, E = 36 GPa, ρ = 8-12 μΩ-cm, κ = 94 W/mK
- Lockheed-Martin recently developed a solid sintered pure copper nanopowder paste that can be processed around 200 °C.
- Based on the well-known melting point depression of materials in nanoparticle form.
- Once fully optimized, the QuantumFuse™ solder material is expected to produce joints with up to 10 times the electrical and thermal conductivity compared to tin-based materials currently in use.
TLPS (Transient Liquid Phase Sintering) is a liquid-assisted sintering process during which a low melting temperature constituent, \(A \), melts, surrounds, and diffuses in a high melting temperature constituent \(B \).

- Intermetallics with high melting temperatures are formed by liquid-solid diffusion.
- TLPS systems can be processed at low temperatures but are capable of operating at the high melting temperatures of the intermetallic compounds.

TLPS joints with flux can be formed from low cost material systems (Cu-Sn, Ni-Sn) without pressure or vacuum. Common metallizations can be joined.
Characterized microstructural evolution in joints during use from Cu → Cu₆Sn₅ → Cu₃Sn

Cu₆Sn₅ matrix

30min@300°C

Cu₃Sn + Cu₆Sn₅ matrix

30min@300°C + 1 hour @ 250°C

Cu₃Sn matrix

30min@300°C + 24 hour @ 250°C

Showed that TLPS joints retain strength > 10 MPa to temperatures > 600°C
Thermal Conductivity vs Mechanical Properties

Thermal conductivity of Au-In system was not found in the literature, conductivity of In and Au were considered as limits.
Effect of Soft Particles

• The respective elastic modulus for each joint is shown in the graph.

• The graph depicts a trend rather than the true strain since the test was limited to the elastic region.

• It reveals that a small percentage of Silicone rubber particles (3rd Particles) can decrease the slope of the line.
Ceramic Substrate Failure Mechanisms

• Direct Bond Copper on Al_2O_3, AlN
 – Failure mode: Debonding of metallization followed by cracking in the ceramic
 – Cause: Local CTE mismatch between metallization and ceramic in temp cycling
 – DBC cracking can be mitigated by:
 • Dimpling or Copper Metallization Thinning
 • Increased Fracture Toughness (Additions)
 • Bonding of Substrate to Copper Heat Sink

• Direct Bond Aluminum
 – Cu: $\sigma_y \approx 70$ MPa \rightarrow High stresses in ceramic and Cu-ceramic interface \rightarrow short time-to-failure under system temperature excursions
 – Al: $\sigma_y \approx 20$ MPa \rightarrow Reduced susceptibility for ceramic fracture, but: extensive deformation of metallization \rightarrow Hillock formation
Polymer Substrate Failure Mechanisms

- **Conductive Filament Formation**
 - Creation of thin metal conducting filaments between traces and vias on the board at high voltage when subjected to thermal cycling and humidity

- **Solder Fatigue**
 - PTH and SMT components

- **PTH/Via Fatigue**
 - Fatigue cracking of the walls of a plated through hole or via as a result of thermal cycling. Crack can propagate around the circumference of the plated through hole (PTH) or Via when cyclic stresses exceed the fatigue strength of the copper wall

- **Corrosion**

- **Creep Corrosion/Dendrite Growth**
 - Electrochemical metal degradation
Reliability of Embedded Capacitors

• Methods for integrating capacitors into 3D structures
 – Embedded capacitor films
 • Pin holes/partial discharge
 • Metal migration
 • Dielectric breakdown
 – Embedded capacitor devices
 • Cracking and delamination – thermomechanical stress
 • Swelling and delamination – hygrothermal stress
Increasing Power Density \rightarrow Integrated Cooling

- Increasing power densities in electronics require more effective cooling solutions, particularly for power electronics modules.
 - Dissipation levels on the order of several hundred watts/cm2 are not unusual.

- Controlling temperature is critical to device performance and reliability.
 - Performance
 - Slower switching, Higher leakage current, Higher forward voltage
 - More Losses (Thermal run-away)
 - Reliability
 - Many failure mechanisms occur more quickly at higher temperatures.
 - Others occur more quickly with wide temperature swings.
Thermal Isolation

Interposer Surface Temperature Rise in Vicinity of Chip

Interposer Thickness = 200 um
Heat Trans. Coeff. = 30,000 W/m²K

Temperature Rise [K]

Distance from Chip Edge [m]

- Copper-Glass
- Copper-Alumina
- Silicon
Embedded Manifold Microchannel Coolers

• Manifold-Microchannel coolers can be embedded directly into the substrate or chip to provide localized heat removal at high volumetric rates from the backside of active ICs and power electronic devices.

• These coolers take many forms. For example single vs. two-phase, silicon vs. ceramic substrates and different alloys, filter size, working fluid, fluid velocity, and temperature.

• They are used to overcome thermal limits that can cause power electronic devices to operate at voltages and currents below their inherent electrical limits.

• No “one-size-fits-all” reliability solution.
Erosion-Corrosion Concerns

- Can result in permanent modification to microfluidic geometries altering heat exchanger efficiency.
- Fluid is within close proximity to the active electronics - may result in catastrophic damage especially in jet-impingement scenarios.
- Particle impingements may generate more particles accelerating degradation.
- Increasing filtering levels increases required pumping power –not always an option.

High accuracy erosion predictions must be made to ensure reliable operation throughout the lifetime of the cooler
Clogging/Fouling Concerns

- Over time particulates can build up on surfaces and channel entrances (fouling) ultimately resulting in channel blockage (clogging).
- Clogging can prevent certain regions of the chip from being adequately cooled.
- Fouling can result in additional thermal resistances reducing heat exchanger efficiency.

As microfluidic passages become smaller and smaller, clogging and fouling concerns become increasingly critical to consider.

Presence of clogging indicates an increase in pressure drop compared to the CFD-based results.

Particulate Buildup in Microfluidic Passages

- Previous studies have shown that particulate build-up and clogging within the microchannels are not likely to occur.
- Major location of fouling is within header/manifold region due to the lower shear stress and abrupt changes in flow direction as fluid enters channels.
- One of the best ways to control particle agglomeration and build-up is by adjusting pH and very stringent particle filtering controls (e.g. less than 0.5μm).
Reliability of Additively Manufacturing Power Devices

- Process Dependent
- High Level of Porosity
- High surface area to volume ratio
- Surface roughness
- Geometric discontinuity
- Microstructure/texturing
- Horizontal grain boundaries
 - Knit strength
 - Interfacial adhesion
- Materials Compatibility/Interactions
- Residual Stresses

3D Printed Inverter

Power Prognostics and Diagnostics

- Monitoring: Monitoring signals or features that can be related to the operating state of a component or system.
- Detection: Determining if a system is operating normally or is deviating from nominal behavior.
- Diagnostics: Determining the cause of the anomalous behavior.
- Prognostics: Estimating remaining useful life before failure.
- O&M Planning: Taking steps to mitigate the effects of the detected fault and future failure by changing planned operations or self-repair.
• Extends power prognostics from individual IGBT devices to full power modules (IGBT and SiC MOSFET).

• Full module parameters, such as $V_{CE(sat)}$, $I_{CE(sat)}$, $V_{GS(th)}$ are monitored for anomalies during power and temperature cycling.

• Anomalies are characterized to sort failures by mechanism (e.g. bond liftoff, wire fatigue, die attach fatigue, substrate fatigue, and on-chip failure (TDDB)).

• Results can be used to develop self-diagnosing prognostic sensors for autonomous vehicles.
Conclusions

• 3D integrated power electronics will use new packaging technologies the reliability of which will need to be understood and modeled.
 – Sintered Interconnects
 – Embedded Actives and Passives
 – 3D Integrated Thermal Management
 – Additive Manufacturing
• Power electronics will become ever more important as it is the critical enabling technology sitting at the intersection of renewable power generation, reliable power distribution and transmission, and efficient power utilization and storage.
• Addressing the reliability issues inherent in compact and high power density packaging which includes integrated thermal management will be the most important research area for realizing the full potential of power electronics.