

Conductive Fusion Technology Advanced Die Attach Materials for High Power Applications

Nicholas Krasco¹, Maciej Patelka¹, Steve Anagnostopoulos¹, Sho Ikeda¹, Frank Letizia¹, Toshiyuki Sato², Satomi Kawamoto², Miguel Goni³, Elbara Ziade³ and Aaron J. Schmidt³

¹ NAMICS North American R&D Center, Diemat, Inc., Byfield, MA, USA
² NAMICS Techno Core, Niigata, Japan
³ BOSTON UNIVERSITY, Department of Mechanical Engineering, Boston, MA, USA

Overview

- Background
- Concept
- Summary of Invention
- Properties and Reliability
- Conclusion

Background

Expanding the power electronics market

Increase in demand for products that are energy saving and reduce environmental footprint

Increase our attention to power electronics

Source: Yole's report "Status of Power Electronics Industry 2015

Background

NAMICS

Constantly developing Wide Band Gap (WBG) power devices require:

Increase in functional temperature

New die attaching material is needed.

The Solution: Low stress die attach adhesives with Soft Modifier

Ag Die Attach Adhesives

Ag-Glass

- High k, but high modulus
- Processing Temp. = 370°C
- Use Temp. = **300°C**

Sintered Silver

- High k, but high modulus
- Processing Temp. = 200°C
- Use Temp. = 200°C

Conductive Fusion Technology

- High k with a controlled modulus
- Processing Temp. = 175-200°C
- Use Temp. = > 250°C

Ag-Epoxy

- Low modulus, but low k
- Processing Temp. = 150°C 200°C
- Use Temp. = < 200°C

Thermal Conductivity (W/m-K)

Standard Solder, Ag-Epoxy/Thermoplastic vs. Conductive Fusion Technology

	Data Comparison	PbSnAg Solder	AuSn Solder	Ag-Epoxy, Thermoplastic	Conductive Fusion	
Bulk Adhesive	Thermal Conductivity (1-layer k, bulk)	40-60 W/m-K	57 W/m-K	50 W/m-K	100 W/m-K	100% increase
	Storage Modulus (GPa)	14	59	12	11	Controlled modulus
	Density (g/cc)	9	14.7	3-5	5	
Die Attach Process	DA Temperature	>300°C	>300°C	175-200°C	175-200°C	Low DA temperature, no
	DA Process Atmosphere	Reducing or Flux	Reducing or Flux	Air, or Inert	Air, or Inert	pressure or vacuum needed
Die Attach Properties	Shear Strength (MPa)	15	TBD	20	30	
	Interfacial Resistance (Rth)	TBD	TBD	~0.06 K/W	0.007 K/W	Very good thermal interfaces, great for heat dissipation.
	Effective Thermal Conductivity - keff (3- layer k)	TBD	TBD	7 W/m-K	75 W/m-K	

What is Conductive Fusion Technology?

- Sintered conductive component (silver or copper) plus a "soft modifier" stress reliever
 - Sintered system = high thermal conductivity
 - Soft Modifier = acts as CTE buffer, without disrupting heat flow
- Uses: high-power semiconductor applications
- Focus: pressure-less, low temperature sintering technology
- <u>Goal</u>: great and dependable material for high temperature applications (250°C)

SEM image of sintered conductive component (silver)

SEM image of "soft modifier"

SEM image of sintered silver and soft modifier

Concept

The key factor for new die attach material

- The die attach material acts as a buffer between die and substrate
 - CTE and modulus = very important
 - Low modulus die attach material can relieve stress and improve reliability

• High thermostability of substrate and die means that our materials needs to exhibit high thermal conductivity.

Main Goal: Develop a material that exhibits both high thermal conductivity and reliable stress control.

Simulation Test

With Soft Modifier vs. Without Soft Modifier

Simulation model

Thermal Properties Analysis

- Nano-Heat Transfer Lab Department of Mechanical Engineering of Boston University
 - Fundamental physics of thermal energy at the nanoscale, ultrafast laser measurement techniques, and laser-material interaction
- Thermal Property Imaging Frequency Domain Thermoreflectance (FDTR)
 - Create quantitative, sub-micron maps of a sample's properties such as the thermal conductivity and specific heat

Thermal property imaging

11

1.5

Images courtesy of Boston University

Thermal Conductivity Map of the Bond Line via FDTR

Thermal conductivity of cross-sectioned Conductive Fusion die attach sample via FDTR (Frequency Domain Thermoreflectance)

*Analysis imaging provided by the Nano-Heat Transfer Lab, part of the Mechanical Engineering Department of Boston University

Excellent thermal path – average values above 100W/m-K

Impact on the Storage Modulus vs. Soft Modifier

Impact on the Thermal Conductivity vs. Soft Modifier

Impact on the Thermal Resistance vs. Soft Modifier

Impact on Die Shear Strength (DSS) vs. Soft

NAMICS

Modifier

Summary of Results

- To select amount of stress modifier, all properties must be observed. Need a wellbalanced feature between the modulus, thermal, and mechanical properties, which are in a trade-off relationship.
- 5-8% is conducted as reasonable range for amount of soft modifier.

Reliability

High Demand for Reliability at Adverse Conditions

- Hot Die Shear Adhesion Test
 - 200, 260 and 300°C
- Temperature, Humidity Test (THT)
 - 85°C/85% RH for 1000 Hours
- High Temperature Storage (HTS)
 - 250°C for 1000 Hours
- Temperature Cycling Test (TCT)
 - -55°C/200°C for 1000 Cycles

Hot Die Shear Adhesion

Die Shear Strength vs. Various Temperatures 3mm SiAu bonded to TO-220 Package - Cured at 200°C/1HR

Overall strengths remain rather impressive (above 10 MPa at 300°C)

Temperature, Humidity Test - (85%RH, 85°C)

Humidity Chamber Test - 85°C/85%RH

10x10mm AuSi on Laser Services AuAl $_2O_3$ - Cured at 200°C/1HR

High humidity environment does not promote any degradation after 1000 hours

High Temperature Storage at 250°C

HTS results show no degradation after 1000 hours exposure to elevated temperatures.

High Temperature Storage Results - 250°C

10x10mm AuSi die on AuAl $_2O_3$ - Cured at 200°C/1HR

NAMICS

Temperature Cycling Data from -55°C/+200°C

Summary of Conductive Fusion

- Sintered silver adhesive with soft modifier shows:
 - Modulus controlled by adding soft filler, better stress management
 - DSS = > 30MPa
 - HDSS (300°C) = > 10MPa
- Low cure with high use and operating temperature.
- Reliability:
 - THT (85°C/85% RH) results show stable DSS results after 1000 hours
 - HTS (250°C) results show stable DSS results (roughly at or above 8MPa) after 1000 hours
 - TCT (-55°C/200°C) large area die results show stable DSS values after 1000 cycles.

Acknowledgements

Boston University Nano-Heat Transfer Lab

Mechanical Engineering Department for thermal analysis using FDTR (Frequency Domain Thermoreflectance)

Thank you for your attention

Nick Krasco Chemist NAMICS North American R&D Center N-Krasco@Diemat.com