Integration of Cooling Function into 3-D Power Module Packaging

Zhenxian Liang

Power Electronics and Electric Machinery Group
OAK RIDGE NATIONAL LABORATORY

2360 Cherahala Boulevard
Knoxville, Tennessee 37932
TEL: (865) 946-1467
FAX: (865) 946-1262
EMAIL: liangz@ornl.gov
http://peemrc.ornl.gov

APEC 2014_ Industrial Session_3-D Power Packaging
March 20, 2014
Outline

- **Introduction**
 - Power Electronics Packaging Functions
 - Power Electronics Packaging Assessment
 - Advancement of 3-D Power Electronics Packaging Integration

- **Development of Integrated Cooling Packaging**
 - Power Electronics Packaging Thermal Performance Characterization
 - Integrated packaging I: Pin_fin Baseplate
 - Integrated packaging II: Cold-Baseplate

- **Integration of Cooling Function into 3-D Power Module Packaging**
 - Planar-Bond-All: 3-D Power Module Packaging
 - Process Integration
 - 3-D Packaging of Cooling and Power Modules

- **Summary**
Power Electronics Packaging: Assembly of Multiple Components

Passive Component

Power Module

Cold Plate

Power Electronics System

Control and Drive Boards

Sensors
Power Electronics Packaging: Multi-function Integration

- Multiple Power Semiconductor Devices Integration
- Monitoring and Protection
- Electrical Interconnection
- Cooling (Thermal Management)
- Thermo-mechanical and Mechanical Support
Power Electronics Packaging: State-of-the-Art

- Discrete Components
- Hierarchical Electrical Interconnection
- Interfacial Thermal Management
- Complicated Manufacture

- Cost
- Performance
- Power Density
- Reliability
Power Electronics Packaging: Technical Metrics

Thermal Impedance

Thermal-mechanical Property

Power Conversion Performance

Efficiency $\rightarrow \eta = 1 - (P_{con} + P_{sw} + P_{lp} + Pr_{p}) / P_{in}$

Cost $\rightarrow \frac{S}{kW} = A + B \cdot (1 - \eta) \cdot \theta_{ja,sp} \cdot \frac{(T_{j} - T_{a})}{(T_{j} - T_{a})}$

Reliability $\rightarrow N_{f} = \alpha \cdot \left(\frac{1}{T_{j} - T_{a}}\right)^{\beta} \cdot \exp\left(\frac{E_{a}}{kT_{m}}\right)$
3-D Power Electronics Packaging: Schemes for Integration

- Built-in Passives and Circuitry
- Embedded or Stacked Power Semiconductors
- Reduced Electrical Interconnection
- Cost-effective Manufacturability
- Integrated Electronics
- Embedded Sensors and Monitoring
- Integral Efficient Cooling

Key Features:
- Low Cost
- High Performance
- High Reliability
- High Density
Outline

- Introduction
 - Power Electronics Packaging Functions
 - Power Electronics Packaging Assessment
 - Advancement of 3-D Power Electronics Packaging Integration

- Development of Integrated Cooling Packaging
 - Power Electronics Packaging Thermal Performance Characterization
 - Integrated packaging I: Pin_fin Baseplate
 - Integrated packaging II: Cold-Baseplate

- Integration of Cooling Function into 3-D Power Module Packaging
 - Planar-Bond-All: 3-D Power Module Packaging
 - Process Integration
 - 3-D Packaging of Cooling and Power Modules

- Summary
3-D Thermal Model of Power Module with Cooler

- IGBT, Diode Power loss;
- Coolant flow rate;
- Pressure Drop;
- Coolant inlet temperature;
- Single- or Double-sided cooling.
Thermal Resistance In State of the Art Power Module Assembly

Thermal Network

Material Layer in Package

Thermal Resistivity of layer (Kcm²/W)

Thermal Grease

Cu Baseplate

DBC Ceramic

DBC Solder

Si Die
Integrated Cooling Packaging I: Pin-fin Baseplate

- Die
- Insulated Substrate (DBC)
- Baseplate with pin fin
- Cold plate element

<table>
<thead>
<tr>
<th>Specific Thermal Resistance (°C·cm²/W)</th>
<th>Wirebond</th>
<th>Integrated Single Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.541</td>
<td>0.470</td>
<td></td>
</tr>
</tbody>
</table>
Integrated Cooling Packaging II: Cold-baseplate

Diagram showing the components of a cold-baseplate system, including a SiC die, insulated substrate (DBC), metal on substrate (Cu), substrate attach (solder), die attach (solder), coolant inlet, and coolant outlet.
Thermal Performance Characterization

Thermal Resistance Comparison

Vf-T calibration curve of body diode in SiC MOSFET

\[y = -2.45x + 900.25 \]
\[R^2 = 0.9988 \]

CFD Simulation:
Temperature distribution in an Integrated SiC power module

Vf decay of body diode in SiC MOSFET during cooling down

Thermal Resistance Comparison

<table>
<thead>
<tr>
<th>Rja,sp (cm²°C/W)</th>
<th>Conventional</th>
<th>Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.88</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Performance Evaluation in a High Frequency Converter

100A/1200V SiC Power Modules: Conventional packaging (left); Integrated cooling packaging (right)

Two 100A/1200V SiC Power Modules in a HF (48KHz) converter: Converter packaging (left); Waveforms (right)
Performance Estimation in a System

Current density allowed for different power semiconductor and cooling combinations at $\Delta T_j=100^\circ C$ for a typical operation ($D=0.5$, $f=5\text{kHz}$)

<table>
<thead>
<tr>
<th>Item</th>
<th>Si_Con. Cooling</th>
<th>SiC_Con. Cooling</th>
<th>Si_Integ. Cooling</th>
<th>SiC_Integ. Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Density J_d (A/cm²)</td>
<td>65.35</td>
<td>144.97</td>
<td>97.57</td>
<td>184.98</td>
</tr>
</tbody>
</table>
Outline

- Introduction
 - Power Electronics Packaging Functions
 - Power Electronics Packaging Assessment
 - Advancement of 3-D Power Electronics Packaging Integration

- Development of Integrated Cooling Packaging
 - Power Electronics Packaging Thermal Performance Characterization
 - Integrated packaging I: Pin_fin Baseplate
 - Integrated packaging II: Cold-Baseplate

- Integration of Cooling Function into 3-D Power Module Packaging
 - Planar-Bond-All: 3-D Power Module Packaging
 - Process Integration
 - 3-D Packaging of Cooling and Power Modules

- Summary
Planar Bond All Integrated Power Module

- 3-D, Planar Power Interconnection
- Integrated, Double Sided Cooling
- Symmetrically Mechanical Structure
- Simplified Manufacture

*Patent Pending: Pub No: 2013/0020694 A1
Develop Integration Packaging Process Technology

Planar_Bond_All*

Wire Bond Packaging

1 Substrate Preparation
2 Die Attach
3 Substrate Attach
4 Terminal Frame Attach
5 Wire Bond
6 Encapsulate
7 assembly

*Patent Pending: Pub No: 2013/0020694 A1
Prototype: Planar_Bond_All Power Modules

Bare Semiconductor Dies

Planar Bond Power Module Stage

Electrical Connection

Double Cooled Power Module

Patent Pending: Pub No. 2013/0020694 A1
Electrical Performance Characterization

IGBT I-V Curve

Planar Bond Module

Wire Bond Module

IGBT Switching Curve

∆Vce(WB)=156V
∆Vce(PB)=72V

Electrical Parameters Comparison

<table>
<thead>
<tr>
<th></th>
<th>Experimental Value</th>
<th>Calculated Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar Bond_Lower IGBT</td>
<td>10.5</td>
<td>6.3</td>
</tr>
<tr>
<td>Wire Bond-Lower IGBT</td>
<td>31.9</td>
<td>23.5</td>
</tr>
</tbody>
</table>
Thermal Performance Characterization

Flow rate: 0.52 gpm
Pressure drop: 22 psi

<table>
<thead>
<tr>
<th>Specific Thermal Resistance (°C×cm²/W)</th>
<th>Wirebond</th>
<th>Integrated Single Cooling</th>
<th>Planar_Bond_All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.541</td>
<td>0.470</td>
<td>0.334</td>
</tr>
</tbody>
</table>
Design of 3-D Packaging of Cooling and Power Modules

Flow rate: 0.5 gpm, pressure drop: 22 psi
0.291 °C/W for center module

Flow rate: 1.3 gpm
Pressure drop: 38 psi
Summary

➢ Advance power module packaging technologies, focusing on improvements in cost, reliability, power efficiency and density through structure, material and processing integration.

➢ A group of power modules with double sided planar interconnections and integrated heat exchangers has been prototyped.

➢ Their three dimensional power interconnection configuration has been proven to offer low parasitic electric inductance and resistance, leading to high efficiency power conversion.

➢ The double sided cooling reduces dramatically thermal resistance. Additionally, the package allows for ease of fabrication and low manufacturing costs.
Research sponsored by the Advanced Power Electronics and Electric Motors Program, DOE Office of Vehicle Technologies, under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Thanks and Questions?