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Power electronics – Areas for Progress

Source: Kolar et al. [1]
Source: Kerachev et al. [2]

◮ Excellent active devices are now available (SiC, GaN)
◮ Many topologies introduced over the years;

◮ Recent changes: multi-cellular structures
◮ Integration and Packaging are the main areas for progress [1, 3, 4, 5]

◮ Reduce size and circuit parasitics, improve thermal management. . .
◮ Manage increased interconnection density
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Why Embedding?

◮ Optimize thermal management
◮ Heat sources closer to heatsink
◮ Dual side cooling

◮ Improve performance
◮ Shorter interconnects
◮ Lower inductances

◮ Reduce size
◮ Use substrate volume

◮ Manage complex interconnects
◮ Batch process
◮ Take advantage of PCB design tools

Surface-mount component

Via

Microvia

Wirebonds

External copper layer

Internal copper layers

Semiconductor die

Fiber/polymer 
laminate

Solder
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Embedding of Power Dies – 1

◮ Most embedding effort on power dies:
◮ Most power density
◮ Fastest voltage/current transients

◮ Requires special finish on dies
◮ 5-10 µm Cu (not standard)
◮ Buffer for UV laser
◮ Also for microetch in plating step

◮ Backside connection by sintering or vias
◮ Sintering compatible with standard dies
◮ Vias require Cu finish and adhesive

conductive chip attach

embedding by lamination

via drilling top, through-via

Cu plating and structuring

Left and above, source: Ostmann [6]
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Embedding of Power Dies – 2
Some alternative techniques

◮ Stud bumps and machining
◮ Foam interposer
◮ Mechanical drilling

Source: Hoene et al. [7]
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Embedding of Power Dies – 2
Some alternative techniques

◮ Stud bumps and machining
◮ Foam interposer
◮ Mechanical drilling

Source: Hoene et al. [7]

Source: Pascal et al. [8]
Source: Sharma et al. [9]
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Embedding of Formed Components – Inductors

Magnetic Layer

◮ Relies on magnetic/polymer film ➜ Low µr

◮ Limited to 10 – 100 W
Source: Waffenschmidt et al. [10]

Planar magnetic components

◮ Very common, but not really embedded
◮ High performance
◮ Compatible with low (W) or high power (kW)

Embedded core

◮ Strong industrial development (Murata, AT&S,
Würth)

◮ Currently limited to low power (W)

Source: Ali et al. [11]
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Embedding of Inserted Components

Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connections with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [6]
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Embedding of Inserted Components

Soldered components:

◮ Suits most Surface-Mount Devices
◮ Connections with regular vias

Vias to components:

◮ Requires components with Cu finish
◮ More compact (vias on components)

Source: Ostmann [6]

For power electronics

◮ Embedding of “large” capacitors (1 µF range)
◮ Embedding of gate driver ICs and peripheral components, control
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Thermal Management of Embedded Components

◮ Poor thermal conductivity of FR4 compared to ceramics
(1–7 W m−1 K−1 vs 150 W m−1 K−1 for AlN)

◮ In theory better breakdown field (≈ 50 kV mm−1 vs. 20 kV mm−1)
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◮ Poor thermal conductivity of FR4 compared to ceramics
(1–7 W m−1 K−1 vs 150 W m−1 K−1 for AlN)

◮ In theory better breakdown field (≈ 50 kV mm−1 vs. 20 kV mm−1)

To improve through-plane heat conduction:

◮ Micro-vias (electrically conductive), Filled cores (e.g. alumina)

To increase in-plane heat conduction:

◮ Thicker copper, Anisotropic layers (Graphite), Dual-phase

Source: left: Liew et al. [12]; right: Silvano et al. [13]
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Reliability of PCB with Embedded Components

◮ Temperature-related issues
◮ Rapid degradation above 190 ◦C
◮ Hydrocarbon, polyimide-based

PCBs resistant up to 250 ◦C
◮ Thermal cycling issues

◮ CTE of PCBs much higher than
ceramic or semiconductor

◮ Availability of low-CTE materials
➜ lacks data on large components

◮ Other PCB-specific issues
◮ moisture absorption,
◮ conductive anodic filaments. . .

➜ No showstopper identified yet!
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Converter topology

CDM

LDM

LDM

EMI Filter

VDCVS

Is LPFC

PFC PPB

LCM

LCM

CCM

CCM

◮ Bidirectionnal, Power Factor Converter for 3.3 kW applications
◮ Designed through an optimization procedure [16, 17]

◮ Based on SiC power devices
◮ 180 kHz switching frequency
◮ 4 interleaved cells

◮ Discussed here: PFC cell
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Physical Structure

Inductor PCB 

(4.5 mm-thick)

} Driver PCB

(4.5 mm-thick)

TIM

(0.2 mm-thick)

Dies PCB

(0.7 mm-thick)

Heatsink

(25 mm-thick)

}

}
}

TIM

(0.2 mm-thick)

TIM

(0.2 mm-thick)

HF Die

Magnetic Core

3-PCB structure

◮ Magnetic component on top
◮ Heatsink on bottom

( natural convection)
◮ Power chips close to heatsink
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Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
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Converter Cell Assembly

◮ PFC inductor (Thick)
◮ TIM
◮ Gate driver (thick)
◮ TIM
◮ Power devices PCB (thin)
◮ Thermal Interface Material (TIM)
◮ Heatsink

◮ Board-to-board interconnects using wires soldered in through-holes
◮ Final cell dimensions: 7 × 7×3.5 cm3
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Full converter assembly

◮ 4 PFC cells for a full converter
◮ DC capacitor bank for test only
◮ 4-stage EMC DM filter
◮ 28x7x5 cm3
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Test Coupons – power devices

For SiC dies

◮ good quality of microvias
◮ No damage to dies
◮ Uniform thickness

◮ Good alignment
◮ Gate contact

500×800 µm2

◮ Good electrical perf.
◮ Consistent RDSon

(80 mΩ)
◮ No change in Vth

◮ Low leakage current
(max 1.6 nA @ 1200 V)

◮ Very good yield
(97% on 44 dies)

SiC MOSFET

Microvias
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Test Coupons – 2

Voltage (V)
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Example: 600 V diodes for bootstrap driver

For SMD components:

◮ Test on:
◮ Ceramic capacitors

(3.3 µF, 25 V up to 330 nF,
500 V)

◮ Packaged diodes
(4.7 V Zener up to 600 V
rectifier)

◮ Characterization:
◮ No failure detected
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Operation of the PFC converter
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◮ 4 interleaved PFC cells (target power 4×825 W=3.3 kW)
◮ Operation at reduced power because of losses in inductors

◮ Current unbalance because of differences in inductor values
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Conclusions – Exploiting the PCB Embedding

◮ “All-embedded”, interleaved PFC designed
◮ includes dies, driver, inductors
◮ Very good production yield
◮ Only issue: embedded inductors

◮ Full power tests ongoing
◮ Tested at 400 V with planar inductors
◮ Frequency behavior of embedded inductor

under investigation

◮ Next step: better use of embedding
◮ Keep some components on the surface
◮ Improve design for manufacturing
◮ Improve design tools
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