

Thermal Modeling Challenges for Multilayer Ceramic Capacitors(MLCCs) in High Power Density Assemblies

Allen Templeton KEMET Electronics Simpsonville, SC allentempleton@kemet.com

KEMET Co-Authors: Maurice Perea, Javaid Qazi, Nathan Reed, John Bultitude, Galen Miller, Mark Laps

Background

- KEMET developed Class 1 Ni BME MLCC (KC-LINK[™]) for use at higher frequencies and temperatures with WBG semiconductors.¹
- Higher capacitance surface mountable leadless stacks (KEMET KONNEKT[™]) have lower heat dissipation when mounted with inner electrodes perpendicular to the printed circuit board (pcb).
- To better understand its thermal properties, a 3640 0.22µF rated MLCC was modeled and measured to obtain thermal resistance and capacitance.
- Thermal models and measurements have been made for 3640 Leadless Stack (KEMET KONNEKT[™]) packages to understand their performance in power supplies.
- 1. 'An Evaluation of BME C0G Multilayer Ceramic Capacitors as Building Blocks for DC-Link Capacitors in 3-D Power Electronics', J. Bultitude et al, 3D PEIM 2016, Raleigh, NC, USA

Electronic Components

Presentation Outline

Thermal Resistance of MLCC materials MLCC Finite Element Model (FEM) MLCC Experimental Results Revised MLCC Orientation Model Leadless Stack Models Leadless Stack Experimental Results Thermal Impedance Network Conclusions

The max temperature of an MLCC in a 4 component leadless stack varies based on how the component is mounted to the substrate was reported at APEC 2017²

Top View 139.7 39.2 38.4 37.4 35.4 32.3 Low Loss Traditional 30.7 30.0 29.2 28.5 **Circuit Board/Package** Circuit Board/Package 27.7 27.0 26.2 25.4 24.7 Side View

3

2. 'Developing Capacitors for Wide-Bandgap Applications', John Bultitude APEC 2017

Thermal Resistance Path to Each Termination

Active (parallel plate dielectric layer)

 $R_{\Theta} = L/(K^*A)$

K = thermal conductivity

A = cross sectional area W * T

When L=W R_{Θ} per square is 1/(K*T)

An effective K was computed for active region from the parallel combination of R_{Θ} per square of Nickel and CaZrO₃ for the number of electrodes and actives in MLCC

P is Dissipated Power (Heat)

	K(Watts/(°C*m)	T (m)	R _e per square (°C/Watt)
Nickel	90	1.2e-6	9.26E+03
CaZrO ₃	3.0	1.27e-5	2.62E+03

Thermal Conductivity Regions

Region D Ceramic top, bottom and side margins

Solid Works FEM Model

The model was excited with 10 distributed 0.1 Watt heat sources in Region A based on method presented at 3D PEIM.³

3. 'Thermal Models of Multilayer Ceramic Capacitors for 3D Power Electronics', Allen Templeton 3D-PEIM 2018

FEM Model of MLCC in Still Air

ESR and R_{Θ} for MLCC

New Low Loss Model has 50 % of Heat generated in termination and 50 % inside MLCC to match measured ESR increase.

The model now has 10 distributed 0.05W heat sources for a total of 0.5 W inside MLCC

Max Temperature gradient is reduced by 11 °C

2-MLCC Stack Traditional and Low Loss Orientations

2-MLCC Stack Experimental Results

4-MLCC Stack Traditional and Low Loss Orientations

4-MLCC Stack Experimental Results

 $R_{\Theta interconnect}$ was estimated from LTspice parameter sweep to match MLCC Temperature T_1

@ 25 A RMS Total Dissipated Power was 0.8 W ~ 0.2 W per MLCC

Conclusions

- Adding MLCCs in the Low Loss orientation stack reduces the electrical and thermal resistance.
- The interconnect increases the thermal and electrical resistance in traditional orientated stacks as more MLCCs are added.
- This modeling approach for MLCCs and leadless stacks will be used to optimize the thermal performance of other case size MLCC leadless stacks.
- The more complex thermal networks developed for leadless MLCC stacks will be used to study how the stacks perform in high density power supply designs.

Low Loss Orientation	ESR Measured (mΩ) 300 kHz	R _o Modeled/ Measured (°C/W)
MLCC	4.5	30/22.9
2-MLCC	2.8	13/8.9
4-MLCC	1.2	7/5.8
Traditional Orientation	ESR Measured (mΩ) 300 kHz	R _o Modeled/ Measured (°C/W)
Traditional Orientation MLCC	ESR Measured (mΩ) 300 kHz 1.7	R _o Modeled/ Measured (°C/W) 13/10.9
Traditional OrientationMLCC2-MLCC	ESR Measured (mΩ) 300 kHz 1.7 1.5	R _o Modeled/ Measured (°C/W) 13/10.9 14/13.6

Future Work

Thank You!

KEMET Electronics Corporation 2835 KEMET Way, Simpsonville, SC 29681, USA

