

ADVANCED MATERIALS, DESIGNS AND 3D PACKAGE ARCHITECTURES FOR NEXT-GEN HIGH-POWER PACKAGING

DR. VANESSA SMET 3D SYSTEMS PACKAGING RESEARCH CENTER

CREATING THE NEXT®

Outline

CREATING THE NEXT[®]

- Why 3D for Next-Gen SiC Packaging?
- Innovations in Package Design & Materials
- Summary

3D Systems Packaging Research Center at Georgia Tech

- Comprehensive global Industry Consortium in System Scaling to enable supply-chain manufacturing to end-user needs
- Industry culture and R&D infrastructure (300mm clean room facility)

ING THE NEXT

Strategic Need: Packaging Solutions FOR WBG

Georgia Tech

 Electrical power needs are increasing across the transportation field

 Shift from Si to SiC with higher voltage/power ratings, switching speeds, max. junction temperatures in smaller footprint

Power ↑ + Size ↓ = Temperature ↑

... but power packaging is slow to change and is now limiting the performance of power electronics

We need power electronics packaging AND cooling to catch up to the devices capability

Current SiC power module

\uparrow capacity, \uparrow efficiency, \downarrow cost

CREATING THE NEXT®

Evolution of Power Packaging Technologies

Coole

Attach

n

Coole

Attach

-MOSFET

Die Attach

3D Power Package

Cold Plate

Insulated Substrate (DBC)

Cold Plate

cooling, Scalability in power

L-Diode

U-Diode

Insulated Substrate (DBC)

Molded Power Cards

Conventional Power Module

Wire bonds, Single-side cooling, Separate power / control / drive integration

Packaging Trends:

- \downarrow parasitic L, \uparrow reliability, \uparrow thermal behavior
- Leverage more standardized manufacturing

New solutions required to fully benefit from performance improvements of SiC

CREATING THE NEXT[®]

Transition from Si to SiC... the "dv/dt" challenge

CREATING THE NEXT[®]

- Fast rise and fall times of SiC devices result in high dv/dt
 - Common mode currents
 - ► EMI
 - Complex gate driver

Package parasitic capacitance plays a critical role in dv/dt capability Common mode currents can lead to electrical discharge machining (EDM) on ball bearings, will be worse with SiC

Image of ball bearings in motor with voltage source converter

*Doyle Busse, Jay Erdman, Russel J. Kerkman, Dave Schlegel, and Gary Skibinski, "Bearing Currents and Their Relationship to PWM Drives " IEEE IECON, 1995

 Two ways to solve the problem: topology, packaging

What we can do on packaging side to address the transition to SiC

18

Conventional Packaging

PRC's Solution: 3D Power Package with Die Stacking

Parameters	Current Packaging Solutions	Our Targets
Heat Flux	200W/cm ²	1kW/cm ²
Breakdown Voltage	10kV	>30kV
Max. Junction Temperature	150-175°C	>200°C
Thermal Performance	No thermal transient control	Thermal transient suppression
🛿 Reliability	Poor at full device rating	Improved

Beyond Traditional 3D: Die Stacking

CREATING THE NEXT®

Georgia Tech

Package Parasitic Capacitance

LTSPICE simulations

Novel 3D Design

ANSYS MAXWELL simulations

	Conventional	Novel 3D
BP-TN	123 pF	85 pF
ВР-ТО	140 pF	0.08 pF
BP-TP	15 pF	85 pF
BP-g_low	12 pF	0.015 pF
BP-g_high	9 pF	0.015 pF

- Minimized output capacitance with new design (die stacking)
- Impact of dv/dt coupling with parasitic capacitance of package significantly reduced

Simulations by H. Lee

Package Parasitic Inductance

Package Thermal Design – Effect of Cu Thickness

Modeling by H. Lee

Thermomechanical Modeling – Effect of Cu Thickness

Trade-offs between thermal & reliability performances \rightarrow material innovations to improve reliability CREATING THE NEXT[®] Modeling by H. Lee

Key Basic Technologies For Next-Gen SiC PKG

2-phase cold plate

SiC

SiC

Cu

Cu

Multiphysics Design

- Transition from sequential electrical → thermal → mechanical to true multiphysics design
- Understanding of tradeoffs

/ encapsulants

Thinfilm insulators

3D Power Card

with Die Stacking

High-temp. HV dielectrics

- Die-attach film sintering (Cu, organics-free, compliant)
- Low-stress, high-conductivity conductors (Cu-graphene)
- High-temp. HV dielectrics / encapsulants / thinfilm insulators

Cu / low-stress conductors (integrated heat spreading)

Die-attach by film sintering

Manufacturing

- Standard panel-scale processing
- Co-develop with supply chain

System-level Cooling

- Two phase: 个dryout performance

Reliability

- Power & thermal cycling
- ↑ max. junction temp.

Nanocopper ligament size, nn

Versatility in Implementation

Collaboration with Prof. Antoniou

CREATING THE NEXT[®]

NP-Cu Die-Attach Films on Thinfilm Cu Core

CREATING THE NEXT®

Collaboration with Prof. Antoniou

Data collected by K. Mohan

Collaboration with Prof. Antoniou

Data collected by K. Mohan

Direct Patterning by Semi-Additive Processing

Collaboration with Prof. Antoniou

Data collected by K. Mohan

CREATING THE NEXT[®]

Successful plating of Cu-Zn in all the patterns, smooth surface profile, uniform Cu-Zn composition across wafer IEXT*

Collaboration with Prof. Antoniou

4" Wafer Bumping – NP-Cu Cap Formation

CREATING THE NEXT®

Collaboration with Prof. Antoniou

Data collected by K. Mohan

Cu Pillar with NP-Cu caps – Assembly Demo Georgia

Assembly parameters: 30MPa, 300C, 30min, forming gas

Collaboration with Prof. Antoniou

Data collected by K. Mohan

CREATING THE NEXT®

Low-stress Conductors: Cu-Graphene Composites

PRC's Solution

Cu-graphene bulk composites

- Tailorable CTE 3-15ppm/K with $\lambda \,{}^\sim$ 460W/m·K
- "Second sound" effect in graphene
- Direct plating & vacuum powder processing
- *Applications*: Cu functionalization, metallization on DBC/AMB substrates, integrated heat spreaders

Low-cost Synthesis

Electrochemical exfoliation of graphene from graphite

• Orientation control by magnetic field

 Implementation in plating line

Georgia Tech

Plasma sintering

High-Temperature Dielectrics & EMCs

System-level Cooling: Advanced Cold Plates

Prior Art

 Aluminum channels brazed onto substrate, single phase, WEG (Prius)

 Snaking injection-molded copper channels, single phase, WEG (Volt)

New Concept

- Decrease temperature nonuniformity and hotspot formation in single phase
- Increase critical heat flux by delaying dryout failure for reliable two-phase cooling

CREATING THE NEXT

NEW CONCEPTS

- Additively manufactured (AM) foam-type structures
 - Rhombic dodecahedron unit cell for stochastic foam imitation
- Elimination of contact resistance
 - Direct printing to eliminate thermal interface materials
- Local control of parameters such as pores per inch (PPI), porosity (ε), elongation, etc.
 - Allows for localized hotspot cooling, thermal gradient management, vapor pathways

Summary

- Advances in several building block technologies from low to high power electronics for next-gen 3D power modules
 - High-density passives
 - Package designs for high dv/dt capability vs. soft switching topologies
 - Low-cost sintered Cu die-attach films
 - Low-CTE high-conductivity conductors
 - High-temperature dielectrics and interfaces
 - Low-cost panel-based fabrication with supply chain
- First prototype (SiC full-bridge rectifier) expected in 2019 end

Acknowledgements

- This work is funded by PRC's Industry Consortium & SRC's "Global Research Collaboration"
- Collaborators: GRAs K. Mohan, H. Lee, R. Sosa, J. Li, J. Broughton, GT Profs. Antoniou, Joshi, Losego, Wong, Center for Distributed Energy
- PRC & IEN staff & infrastructures

TANK

CREATING THE NE

CREATING THE NEXT®

Back-Up Slides

Nanoporous (NP) Cu Synthesis – Concept

Georgia Tech

A-B alloy fabrication:

- Electro-deposition
- **Co-sputtering**
- Melt spinning
- **Furnace melting** ۰

Hakamada, M. and M. Mabuchi (2013)." Critical Reviews in Solid State and Materials Sciences 38(4): 262-285

Dealloying parameters are:

- **Etchant chemistry**
- Dealloying time
- Applied potential (V_c)
- Temperature

Final nanoporous structure after dealloying

CREATING THE NEXT[®]

The Promise of Nanoporous (NP) Cu: Compliance Georgia

- NP-Cu deforms at very low load
- Limit to amount of displacement of the NP-Cu before micro-cracking starts: ~20% of initial height (conservative estimate)

CREATING THE NEXT[®]

The Promise of Nanoporous (NP) Cu: Sintering Kinetics

Thermal sintering carried out in inert N_2 and reducing environments (N_2 + 3% H_2)

rgia Tech

CREATING THE NEXT[®]

Studies ongoing to understand nature of sintering under different environments to be able to design NP metals for sintering applications

N. Shahane, V. Smet, A. Antoniou "Anomalous coarsening in nanoporous metals" (nearing submission)

The Promise of Nanoporous (NP) Cu: Sintering Kinetics

 $d^n = KtD_s$

Grain-growth model

'gia

Tec

 $D_{\rm s}=D_0\exp\left(\frac{-E}{RT}\right)$

Arrhenius function

$$l^n = KD_0 \exp\left(-\frac{E}{RT}\right)t$$

Combined equation

- More complex mechanism than simple surface diffusion under heat
- Surface diffusion driven kinetics under electrolyte coarsening

The initial results indicate NP metals have very high surface energy resulting in complex sintering kinetics that need to be further studied and understood

N. Shahane, V. Smet, A. Antoniou "Anomalous coarsening in nanoporous metals" (nearing submission)

Concept of anisotropic foams for stress buffering in die-attach

Georgia Tech

Anisotropic platinum foams with vertical channels

Antoniou, Antonia, et al., 2009

CREATING THE NEXT®

EDX Analysis of Sintered Joint

Fracture Interface Analysis after Die Shear Test

Georgia Tech

Failure within the sintered foam layer, not at the interface, signifying good metallurgical bonding between NP- and bulk-Cu

NP-Cu caps were able to compensate for the variation in their heights as well as the surface roughness of the substrates

CREATING THE NEXT®

Die-side

Substrate-side

5µm

Data collected by K. Mohan

Improve Dielectric-Metal Adhesion: Vapor-Phase-Infiltration

