Embedded passives – Recent Advances and Opportunities

PSMA Phase III Report

P M Raj, Himani Sharma, Teng Sun, Robert Grant Spurney, Rao Tummala

3D Systems Packaging Research Center Georgia Institute of Technology

Outline

- Need for embedded passives
- Recent Advances
 - Magnetics:
 - Material advances and options
 - Low-frequency and high-power nanocystalline and amorphous flakes
 - Medium-frequency medium power: Integrated metal flake composites
 - \circ High-frequency, high power density thin nanomagnetic films
 - Emerging opportunities

Capacitors

- Low-voltage, integrated capacitors
- Medium-voltage integrated capacitors
- o High-voltage, high-temperature capacitors
- Emerging opportunities
- LC integrated modules
- Summary

Magnetic Material Advances and Options

	Thickness Microns	Coercivity A/m	Resistivity μ Ohm cm	Saturation Flux (Tesla)	Permeability
Mn,Zn ferrites	>100	3-5	10,000	0.6	5000
Nanocrystalline and amorphous flakes	>15 <i>Low-Fre</i>	3 quency, H	110 ligh-Power	1.2	15000

Electroless thinfilms	3-5	10-20	100	1	<<1000
Plated thin films	2-100	20-80	35	1.3	~1000
Flake composites	25-500 Medium-	100-200 - Frequenc	10,000 :y, Medium	0.8 -Power	100-150

Hiah-Frequency, High Power Density							
Nanomagnetic films 1	1-10	10	200-300	1.5	200-500		

Low-Frequency - High-Power Magnetics

Ferrite 3C90: Vitrovac (Co_{67} Fe₄ B₁₁ Si₁₆ Mo₂) amorphous 500 kHz: 0.1 T peak; 700 mW/cc; flakes: 1 MHz; 0.02 T; 70 mW/cc; 100 kHz; 0.1 Tesla, 30 mW/cc; 100 kHz; 0.2 Tesla: 200 mW/cc; Ferrite 3F5 MnZn: I MHz; 0.02 T; 30 mW/cc Hitachi metals: Finemet - FT-3L and FT-3M: 20 kHz; 0.1 Tesla; 2 mW/cc Sumida's ferrite: 20 kHz; 0.2 Tesla; 15 mW/cc 1.5 MHz; 0.02 T; 37 mW/cc 20 kHz; 1 Tesla; 300 mW/cc I MHz; 0.02 T; 70 mW/cc; 200 kHz; 0.1 T; 250 mW/cc Metal Flake (10000 KHZ) 10000 Metal Flake (3000 kHZ) eran netal Flake (1500 KHZ) Ferrites (1000 KHZ) Vitroperm (100 KHZ) Core Loss mW/cc 1000 Finemet (20 KHZ) 100 10 1 0 0.01 Field (Tesla) 0.1 1

Mid-Frequency - Medium-Power: Metal flake composites:

- (Material Class A)
 - 1 MHz; 20 mT; 400 mW/cc
 - \circ 2 MHz; 20 mT; 1000 mW/cc

Material Class B:

3 MHz; 10 mT; 550 mW/cc 10 MHz; 3 mT; 250 mW/cc 10 MHz; 10 mT; 4000 mW/cc

Medium Frequency – Medium Power: Inductor Advances

Sumida PSI2: Inductor in package molding

Tyndall

Efficiency of a 61.7% power inductor at 91.7%

Thin magnetic films and coupled inductor designs

Taiyo-Yuden – Inductor in package

4X increase in current-handling with metal compacts compared to ferrites

Substrate-Embedded Metal Composite Sheets

		Material properties	Α	В		
		Magnetization (Bs)	~6000 G	~6000G		
		Initial permeability(B _s /H _k)		464	229	
		Anisotropic field (Hk)		~10 Oe	~25 Oe	
L/DCR (nH/mOhm)	30 25 20 15 10 5	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>	140 120 (Hu) 100 80 60 40 20 0			
	۰L	• • 0.5 1 1.5 2 2.5		0 :: D	5 OC bias (A)	10
		Thickness (mm)				

Magnetic Core Inside Substrate Cavities

Slide 9

<u>High-Frequency – High Power-Density</u>

٠

٠

- Peak Q Factor > 20 @ \sim 100MHz
- Peak Inductance Density ~300nH/mm2
- FERRIC

- $L/RDC > 200 nH/\Omega$ for L > 100 nH
- L/RDC of $120nH/\Omega$ for L ~ 10nH
- Current Density exceeding 12A/mm2 for coupled inductors
- Saturation Current exceeding 1.5A for single inductors
- Cross wafer inductance variability $\sigma < 3\%$
- Other Devices in development:
- Transformers, improved inductor designs

Opportunities for Embedded Inductors

- Thick nanostructured or amorphous films with low coercivity, high resistivity and soft magnetic properties:
 - Sputtered films: Good combination of properties but thin
 - Bulk synthesis approaches: Poor frequency stability
 - New approaches to get nanostructures and low losses but with thickfilms

- Coupled inductors: with multiphase switching topologies, DC currents can be made to flow in opposite directions:
 - Cancel DC magnetic fields
 - Enhance current-handling
- Introduce permanent DC fields in the opposite direction
 - Create artificial antiferromagnetic materials

Discrete or Wafer- or Panel-formed capacitors

	MLCC	Silicon Trench	PRC Thin-film Tantalum
			<u></u>
Performance Parameters	MLCC	Silicon Trench	Ta capacitors
Capacitance density	20 μF/mm ³	10 μF/mm³	20-30 μF/mm ³
Thickness	125 - 500 μm	500 μm	50-75 μm
ESR	5-10 mΩ.× μF	50 mΩ × μF	50 mΩ × μF
Frequency stability	>100 MHz	10-100 MHz	10-100 MHz
Leakage current	0.1 μΑ/μF	0.1 μΑ/μϜ	0.1 μΑ/μϜ
Integration	Die-side or landside assembly/embedding	Silicon- integrated	Wafer or package- embedding

Deep Trench Land-Side Inserted Si Capacitors (TSMC)

Land-side on-Si capacitors for integrated fan-out packaging

Wafer-Formed Nanoelectrode Capacitors

Capacitor Integration Process Flow

Package-Embedded High-Voltage Capacitors (KEMET)

Polymer, carbon ink, silver ink cathode layers

Copper terminal

Etched Al foil capacitors to package

48 V Power Converters

Thickness reduction and more effective use of capacitance volume

Capacitors can be patterned onto transfer
release film

- Arrayed sheets
- Individual taping
- Terminals formed by copper cladding and plating

Capability	Target		
Rated voltage	2V-50V+		
Capacitor size	≤1mm		
Cap thickness	~50µm		
Capacitance	≥100µF/cm²		
DC leakage	<50 nA/CV		

Package-Embedded Thinfilm Capacitors

Delphi/Argonne National labs

High permittivity compared to film dielectric; Operation up to 150° C

Large-area polymer or metal roll-to-roll compatible process

Applications:

- Isolators
- Embedded decoupling capacitors

GT-PRC DuPont

Thin ceramic film decoupling capacitors in organic package substrates;

1-1000 MHz 20 nF/mm²

Package-Embedded Thinfilm Capacitors (TFC)

Doubleside integration of decoupling capacitors;

High-frequency noise suppression

Integration and reliability characterization

High-Voltage Capacitors

	Polymer film caps ECI HT1	CDE 550C Aluminum Caps	KEMET Ni BME COG (Comm. Grade)	TDK CeraLink PLZT Ceramic	Advanced electrodes and dielectrics
μF/cc	0.085-	>6	0.6-0.012	5.5-2	10
V	600-2400	200-500	500-3000	500-900	500-1500
ESR mΩ	60	16-228	5	4	5
Irms	5.2	5-31	24	12.5	25
Тетр	125	105	125	150	105

Opportunities for Embedded Capacitors

- High-voltage isolation:
 - High-permittivity and high-voltage dielectrics: PLZT, calcium zirconate
 - 5000 V isolation with power transfer
- Embedded film and discrete capacitors:
 - MLCC that power processor chips with power module right under the chip (200 W in 100 mm² or 2 W/mm²)

- High-density wafer- or packageintegrated capacitors (3 – 400 V):
 - Tantalum film capacitors with porous electrodes
 - Etched foil capacitors
 - Copper film capacitors with porous electrodes

High-density Thinfilm capacitors on Si

Embedded capacitors and film inductors

High-surface area electrodes with conformal dielectrics

Etched foil Capacitors

Summary

Magnetics:

- Advanced materials and designs leading to higher volumetric densities and smaller form-factors
 - Amorphous and nanocrystalline ribbon flakes low frequency
 - Metal-flake composites medium frequency
 - Sputtered and thin plated films high frequency

Capacitors:

- Advanced large-area fabrication of high-density film capacitors
- Thin and area-integrated eliminate pick-and-place

LC-integrated substrates for panel-embedded IVRs