

ONENTS • POWER • CUSTOM • EASE-OF-USE • PERFOR INOVATION • EFFICIENCY • EXPERTISE • CONFIGURAI ME • VOLUME • RELIABILITY • FLEXIBILITY • LONGEVI MWORK • PROVEN • DENSITY • QUALIFIED • COMPENSION SOLUTIONS • INTEGRATION • SUPPORT • OPPORTUNI

3D Cooling of New High Density DC-DC Converters

APEC 2013, Long Beach, USA. March 21st 2013 Stephen Oliver, VP VI Chip Product Line, Vicor soliver@vicorpower.com, +1-978-289-2364

The Many Problems of Heat

- > Lower reliability
- > Lower power capability in elevated environmental temperatures
- > Larger, heavier, more expensive systems
- > Energy loss = more \$/kWhr, more CO₂, more fossil fuel

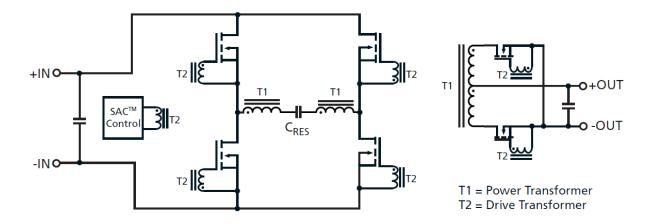
The Two Challenges of Heat

- > 1) Avoiding it
- > 2) Removing it

1) Avoiding Heat

- Choosing the right system architecture
 - > Minimize I²R loss
 - 400V DC distribution in datacenters, 270V DC in airborne systems
 - > Minimize functions / conversion stages
 - 'Narrow' Telecom 48V enables use of high efficiency unregulated, fixed-ratio bus converters to 12V or 9.6V input buck converters
- Choosing the right power conversion topologies / components
 - > Soft-switching (ZVS, ZCS)
 - > Resonant systems
 - > High frequency switching (>MHz)
 - > High efficiency = less heat

 $- P_{\text{DISSIPATION}} = P_{\text{OUT}} \times (1 / \text{EFFICIENCY} - 1)$


Example topology: Sine Amplitude Converter (SAC)

> Fixed-frequency, series resonant (LC) converter

- Resonant tank current is pure sinusoid
- > MHz switching, ZVS and ZCS
- > Flexible topology
 - Full-/half-bridge primary / secondary configurations
 - Stackable for higher input voltages
 - For further reading: <u>http://cdn.vicorpower.com/documents/whitepapers/wp_sac.pdf</u>

> Thermal considerations:

- Maximum component junction temperature = 125°C
- Maximum single-point case temperature = 100°C

2) Removing Heat: Convection and / or Conduction

> Convection

- Blow air across the device
 - > Effectiveness = fn (inlet air temperature, theoretical air flow, impedance / disruption, device temperature)

> Conduction

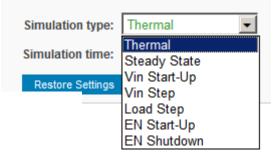
- Mechanical connection to draw heat to a cooler place
 - > Effectiveness = fn (heatsink (size, material), interface (grease, pad, thickness), device temperature, external temperature)

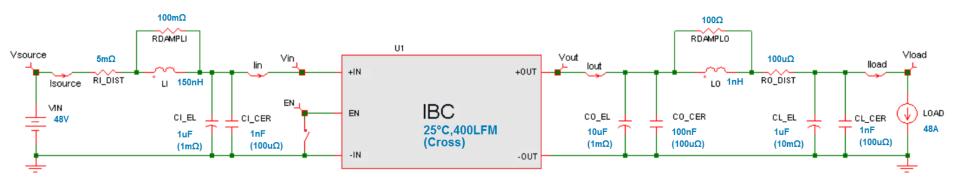
Traditional Convection: Bus Converter

> Intermediate Bus Converter (IBC)

- Traditional construction
- SMT components
- Open frame assembly
- Industry-standard pin connections

> Thermal considerations:

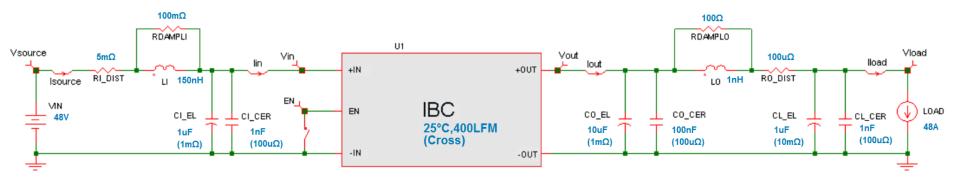

Majority convection cooling



How much Air? Power? ...?

> Simulate for thermal design

- IB048E096T48N1-00 bus converter
- 38-55V_{IN}, 9.6V_{ОUT}, 500W, 98%

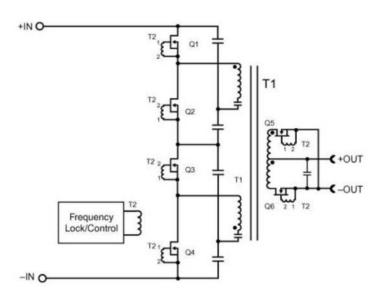


- Define electrical conditions, define airflow, temperatures, direction, etc.

This much Air, Power, etc.

> Simulation result

- 25°C air at 400LFM means:
 - > 97% efficiency
 - > <14W of loss
 - > A safe operating temperature of 69°C

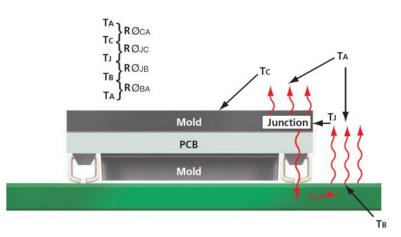

Vin (V)	lin (A)	Vout (V)	lout (A)	Rout (mΩ)	Pin (W)	Pout (W)	Power Loss (W)	Efficiency (%)	Operating Temp (°C)
47.95	9.64	9.34	48.00	4.79	462.42	448.55	13.87	97.00	69

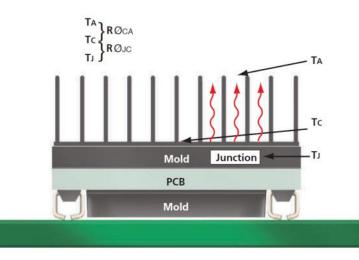
Converter Construction Considerations

	Open frame:	Over-molded	
Convection cooling:	Irregular 'city-skyline' surface makes it difficult to reduce case-ambient resistance by increasing surface area (i.e. adding a heatsink). Soft / thick flexible pads have poor thermal resistance	Regular, flat surface allows simple, effective heatsink attach	
Conduction cooling:	Conduction cooling: Negligible (through pins to main board)	Regular, flat surface allows simple, effective path to cold-plate / application case	
Component 'hot-spots' (may vary over application conditions e.g. "High line, no load" vs. "low line, full load")	Isolated / insular	'Averaged' (lowered) across a wider surface area of the converter by low thermal impedance mold material	
High voltages		Over-molding overcomes creepage / clearance challenges to enable higher input voltage inputs in smaller converter packages	

Over-molded Converter: 'VI Chip'

- > Sine Amplitude Converter
- > Input voltages up to 400V DC
 - 'Stacked-cell primary' SAC variant shown
 - Transformer ratios from 1/1 to 1/40
- > 'Thermally' not 'electrically' power limited
 - Power capability increased if T_{CASE} can be maintained
 - > 330W at T_{CASE} 100°C \rightarrow 375W at T_{CASE} 85°C

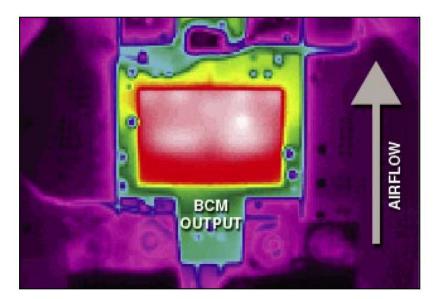

Over-molded: Convection & Conduction


> Convection:

- Simple application of heatsink (vary height, orientation)
- Thin, effective path (grease, phase-change material, tape, etc.)

> Conduction:

- Lower lead/pin impedance to main board
- Power components located close to leads
- Simple attachment to cold-plate

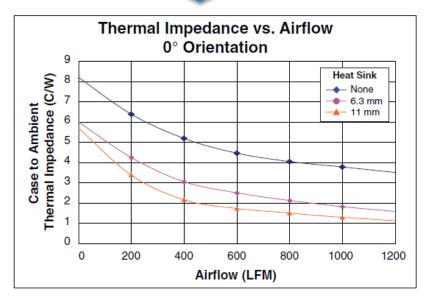


Convection:

Power vs. air, temp 48:12V bus converter

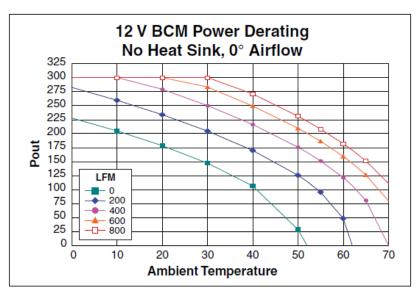
> Output Power

- Fn (T_{AMB}, heatsink, airflow)
 - > More air
 - > Lower temperature
 - > More heatsink
- ... = more power

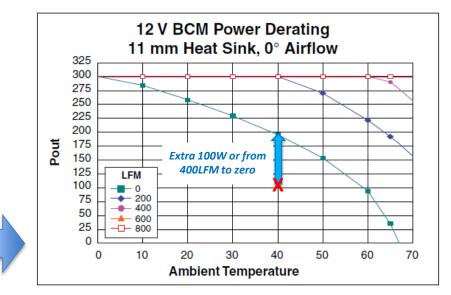

IR image, 0° airflow; Full load, 200 LFM, no heat sink

> Notes

- "0° Airflow" refers to air direction, <u>not</u> air temperature
- See Application Note AN:008: <u>http://cdn.vicorpower.com/documents/application_notes/vichip_appnote8.pdf</u> for more details


Convection: Effect of Heatsinking

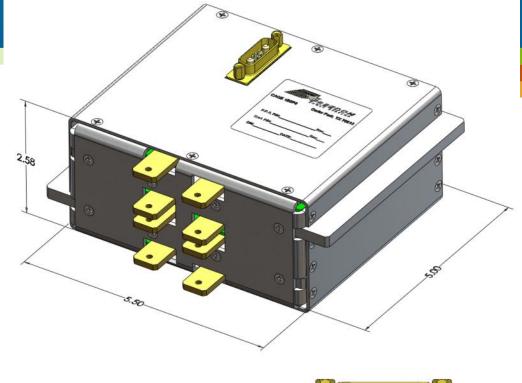
- > Increased surface area exposed to air
- > Thermal impedance reduced



Thermal impedance vs. airflow, 0° orientation

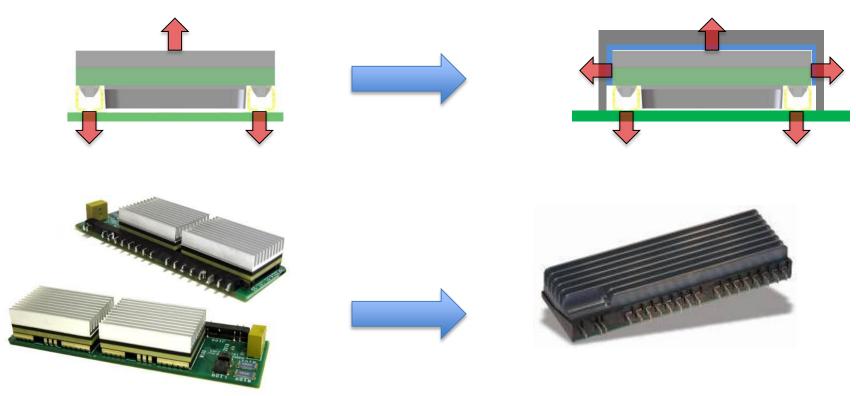
> Get more power and/or use less air

Power derating with no heat sink, 0° airflow



Power derating with 11 mm heat sink, 0° airflow

Conduction: 270V Airborne


> Electrical Specification:

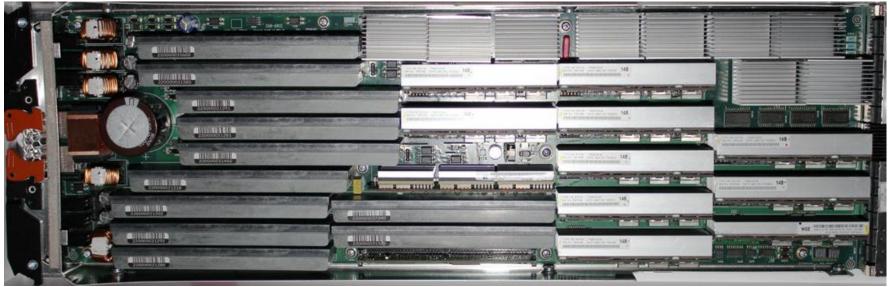
- Input = 270V
- Output = 4V, 800 A (regulated, 3.2 kW)
- > Mechanical Specification:
 - Size = 5 x 5.5 x 2.58"
 - Weight = ~4x less than typical solution
- > Power density
 - => 40 W/in3
- > Thermal design
 - Mount converters either side of cooling plates, brought out to airframe
 - No airflow allowed within case

Minimizing Conductive Impedance: '3D' Approach

> 'VI Brick Arrays'

- Additional heat extraction through *sides* of VI Chip enables increase of power capability up to 10%
- 2-up and 3-up high voltage bus converter arrays in thermally-enhanced, ruggedized solutions simplify thermal management and minimizes board space
- Integrated vertical package orientation also provides better exposure of the heatsink to system airflow.

Conduction, then Convection: IBM POWER7 Disk Enclosure (9 kW)


> Electrical Specification:

- Input = 350V
- Outputs = 12V, 600A and 5V, 558A(pk)
- Efficiency = 94% (to 12V)

> Mechanical Specification:

- Size = 21 x 6.25 x 1.75in

- > Power density
 - = 39 W/in3
- > Thermal design
 - Air-cooled (longitudinal)
 - VI Chips plus standard heatsinks
 - VI Chips in VI Brick arrays

Summary: Efficient thermal design

- > Take a holistic look at the whole system
 - Electrical, mechanical and thermal
- > Select heat path (direction(s) and method) early
 - Maximize chance of reliable, competitive system
- > Use the tools (electrical simulators linked to thermal results)
 - Reduce time to market
 - Avoid excessive 'sand-bagging' / tolerances in designs
- > Good news: lots of options available!

Summary: Efficient thermal design

- > Take a holistic look at the whole system
 - Electrical, mechanical and thermal
- > Select heat path (direction(s) and method) early
 - Maximize chance of reliable, competitive system
- > Use the tools (electrical simulators linked to thermal results)
 - Reduce time to market
 - Avoid excessive 'sand-bagging' / tolerances in designs
- > Good news: lots of options available!

...and thank you!

- > For further information, please:
 - Visit us at booth #731
 - Visit us at <u>www.vicorpower.com</u>
 - Call or email: Stephen Oliver: <u>soliver@vicorpower.com</u>, +1-978-749-3526