

High Density Integrated POL Converters

Presented by

Qiang Li

LQVT@vt.edu

Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Tech

Today's Server Motherboard

Server

Around 30% real estate of motherboard is occupied by VR

High density power module is demanded

APEC 2013

Objective

High-Density High-Current Module (>1000 W/in³@>10A)

High Switching Frequency (2 ~ 5 MHz)

High Efficiency (88%)

3-D Integration

IR Generation 1.1 GaN Device

New Magnetic Material

3D Integrated POL Converter

Active Layer:

Switches, driver, input/output capacitors 2 Layer DBC Substrate (better thermal) Multi-Layer PCB Substrate (low cost)

Passive Layer:

Low profile inductor substrate

Benefit: Footprint saving and fully utilize space

POL Modules with Discrete GaN

APEC 2013

IR GaN: Monolithic Solution

iP2010 & iP2011 GaN Module

Integrated Power Module with Driver

Minimized with monolithic solution

- Integrated design minimizes the parasitics;
- Drive signals are tuned to provide slightly overlap below the threshold voltage;
- More suitable for high frequency.

1st Modification : Power Module Layout

CPES Module

- Integrated Inductor
- Larger parasitic inductance

Bottom View of CPES Module

[2] S. Ji, D. Reusch, and F. C. Lee, "High frequency high power density 3D integrated Gallium Nitride based point of load module," ECCE ,2012.

CPES 2nd Modification: Adding Shielding Layer

□ Loop inductance is reduced by using shielding layer.

[2] S. Ji, D. Reusch, and F. C. Lee, "High frequency high power density 3D integrated Gallium Nitride based point of load module," ECCE ,2012.

CPES Using Ground Plane as Shielding Layer

[2] S. Ji, D. Reusch, and F. C. Lee, "High frequency high power density 3D integrated Gallium Nitride based point of load module," ECCE, 2012.

□ DBC ceramic thickness is usually 10 to 40 mil, therefore the shielding layer has less field cancellation effect.

[2] S. Ji, D. Reusch, and F. C. Lee, "High frequency high power density 3D integrated Gallium Nitride based point of load module," ECCE, 2012.

Efficiency (%)

Efficiency of PCB & DBC Modules

[2] S. Ji, D. Reusch, and F. C. Lee, "High frequency high power density 3D integrated Gallium Nitride based point of load module," ECCE, 2012.

APEC 2013

CPES Thermal Comparison for PCB & DBC Modules

Vin = 12V, Vout = 1.2V, Fs = 5MHz, $T_A = 21$ °C, No Air Flow

PCB Substrate

$$IO = 10A$$
, $P_{Loss} = 2.2W$

DBC Substrate

$$Io = 10A, P_{Loss} = 2.35W$$

$$T_{GaN} = 63.3 \ ^{\circ}C, T_{Driver} = 51.5 \ ^{\circ}C$$

□ DBC module has better thermal performance than PCB module.

LTCC Inductor for 3D Integrated Module

LTCC – Low Temperature Co-fired Ceramics

Good high frequency performance.

D Enable low profile inductor fabrication.

[3] Q. Li and F. C. Lee, "High Inductance Density Low-Profile Inductor Structure for Integrated Point-of-Load Converter," APEC, 2009.

CPES Inductance with Different DC Current

□ LTCC inductors have the non-linear inductance characteristics.

[4] Y. Su, Q. Li, M. Mu, D. Gilham, D. Reusch, and F. C. Lee, "Low profile LTCC inductor substrate for multi-MHz integrated POL converter," APEC, 2012.

Efficiency with Different Inductors

With low profile LTCC inductor

- Higher power density
 Higher light-load efficiency
- [4] Y. Su, Q. Li, M. Mu, D. Gilham, D. Reusch, and F. C. Lee, "Low profile LTCC inductor substrate for multi-MHz integrated POL converter," APEC, 2012.

Two-Phase Module with Coupled Inductor

2-Phase Module

With coupled inductor, more than 40% core thickness reduction can be achieved.

[2] & [5] Q. Li, Y. Dong, F. C. Lee, and D. Gilham, "High-Density Low-Profile Coupled Inductor Design for Integrated Point-of-Load Converters," IEEE Trans. Power Electron., vol.28, no.1, pp.547-554, Jan. 2013. **APEC 2013**

The Impact of DC Flux Cancellation

on LTCC Coupled Inductor

Efficiency of 1.2V PCB Two Phase Module

Power Density Achievement

Thank You !