Novel Technique for Flip Chip Packaging of High power Si, SiC and GaN Devices

1

Nahum Rapoport, Remtec, Inc.

RENTEC[®] Ceramic Packaging Solutions for Optimum Performance

Background

- Electronic Products Designers: under pressure to decrease cost and size
- Semiconductor Devices Become Smaller
- Die Generates more Power
- Higher demands for Packaging
- Packaging becomes a more substantial factor in device and system cost
- Especially true for new high switching speed MOSFETs and eGaN FET Devices

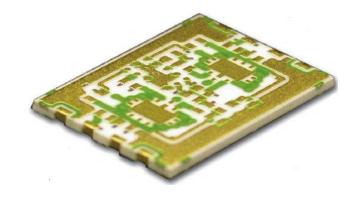
Background (cont.)

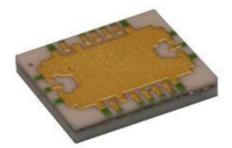
- New devices provide new capabilities
 - Low conduction losses
 - High Frequency Operation
- Innovative Packaging Required to Realize devices' advantages
 - Device Terminal structure dictates "Lateral vs. Vertical" Packaging
 - Lateral: leadless chip scale packages
 - Vertical: flipped chip where the inter-digitation of source and drain minimizes dc resistance and parasitic inductance
 - Chip Scale Packaging:

Hermetic packages/interposers

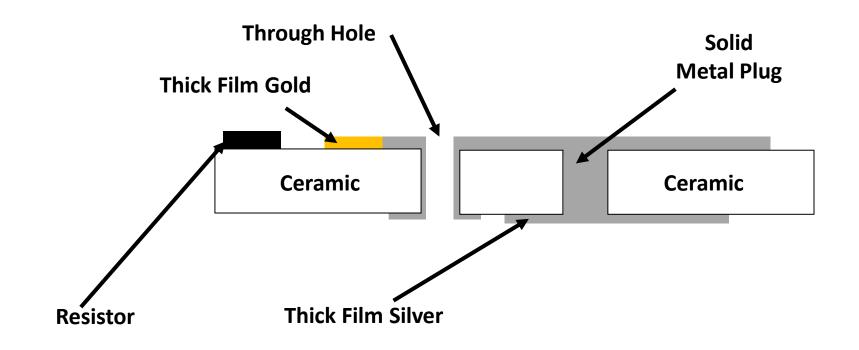
Packaging Goal: What is Needed?

- Scope: To design Cost Effective, High Performance Package for high speed switching Devices
- Highly conductive, low inductance Connections
- Efficient Thermal Management
- Small Size Chip Scale Package
- Non hermetic and Hermetic Options

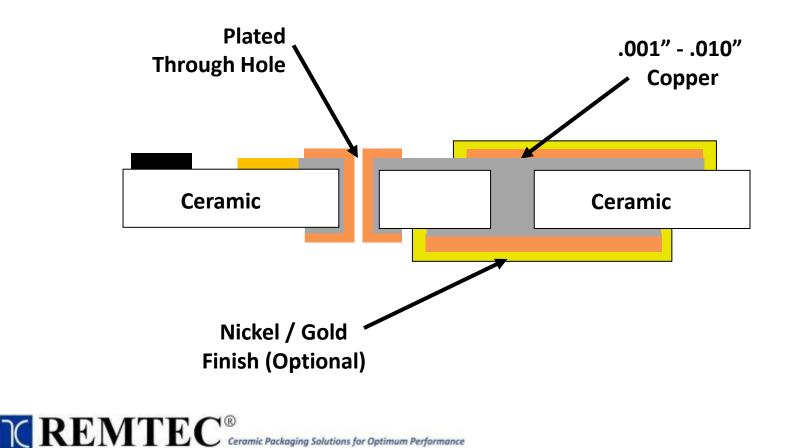



Packaging Solution based on Remtec's PCTF[®] Technology: <u>Plated Copper on Thick Films</u>

PCTF® Technology

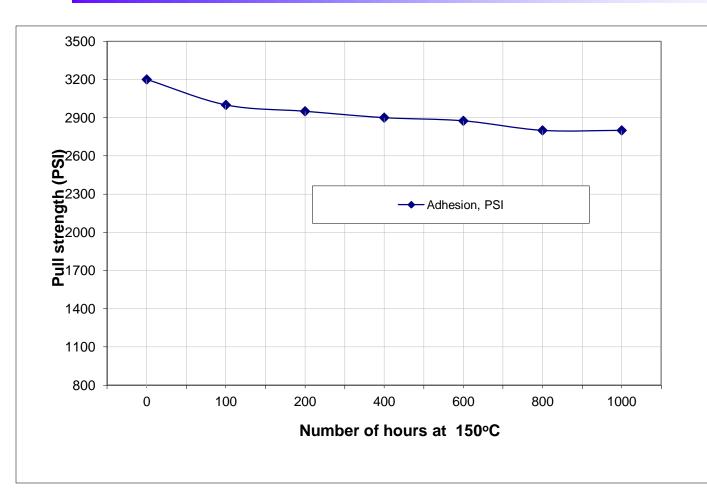

- Plated Copper over Thick Film Silver: .001" -.005" thick
- Cu Plated through-holes, Plugged Vias (hermetic), Wraparounds
- Precision Resistors: $m\Omega$ to $M\Omega$
- •Ni-Au, Pd, Sn, Ag finish
- Mixing Plated & Unplated Thick Films on the Same Ceramic

PCTF® Technology Features


Typical Metalized Ceramic Substrate (Phase One: Thick Films)

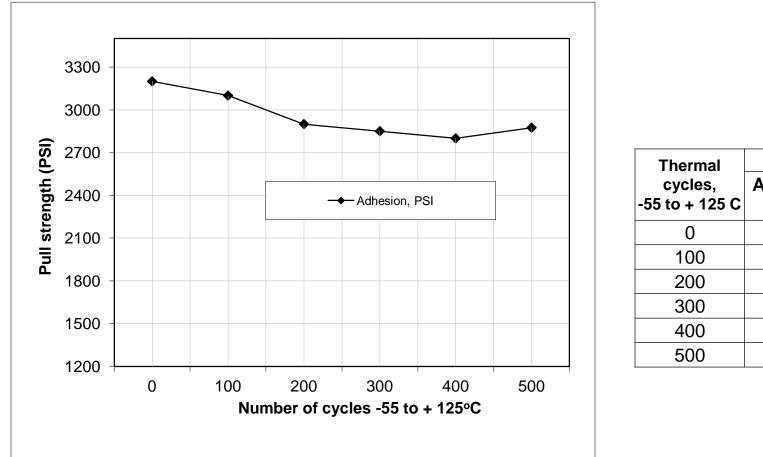
PCTF® Technology Features

Typical Metalized Ceramic Substrate (Phase Two: Copper Plating & Finish)


PCTF Adhesion

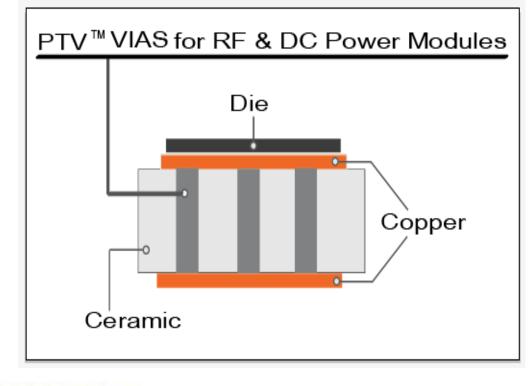
Adhesion Mechanism

- Thick Film Silver to Alumina Ceramic: Oxide bonded
- Plated Copper to Thick Film: Inter-diffusion


PCTF Adhesion Test Data after Aging

Hours at 150 C	Adhesion, PSI
0	3200
100	3000
200	2950
400	2900
600	2875
800	2800
1000	2800

REMTEC[®] Ceramic Packaging Solutions for Optimum Performance

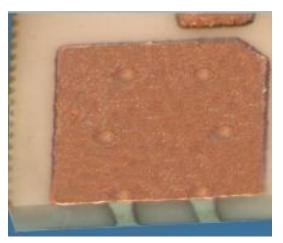

PCTF Adhesion Test Data after Temperature Cycling

Thermal cycles, -55 to + 125 C	Adhesion, PSI	
0	3200	
100	3100	
200	2900	
300	2850	
400	2800	
500	2875	

Package Concept: SMT Ceramic Packages with PCTF®

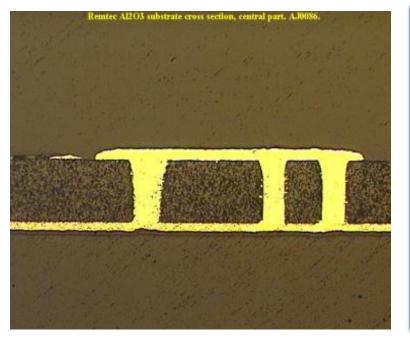
- Material: Alumina Ceramic thermally conductive and mechanically rigid
- Metallization Material: Copper with Low DC Resistance and Solid Metal Plugged Thermal Vias

REMTEC®


SMT Ceramic Packages with PCTF®: Features

A PCTF[®] SMT package includes major features:

- 1. Copper metallization
- Low DC Resistance
- Excellent Heat Spreading Circuit
- Pattern with excellent solderability


SMT Ceramic Packages with PCTF®: Features

- 2. Power Transfer Vias PTV[™]
- Copper Plated Solid Plugged Via holes
- Thermal Vias with k ≥ 200 W/(Mx°C)
- Hermetic Filled Vias (10⁻⁸ atm cc/s)
- Electrical Connections with low dc resistance $\leq 1m\Omega$
- Low inductance and capacitance interconnects
- Unique Via Material Constructions

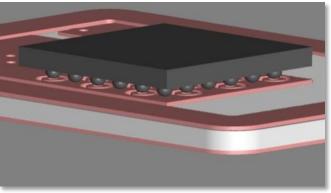
PCTF®: PTV™ Via DC Resistance

Ceramic thickness	Plugged Via Size	Resistance (mΩ)
.010"	.005″	0.50
.015″	.008"	0.42
.020″	.010"	0.38
.025″	.010"	0.47

- Array of 4 vias
- Total Resistance: .1mΩ (10⁻⁴Ω)
- @10 amp I²R losses ~10mW

PTV™- Power Transfer Vias Reliability

- Unique Via Construction Ensures High Reliability
- Withstands 1,000 T-cycles (-55°C to +150°C) without features degradation and integrity loss


New Approach for Packaging of High Speed Switching Flip Chipped Devices

Interposers & Hermetic Packages for SiC and GaN FETs

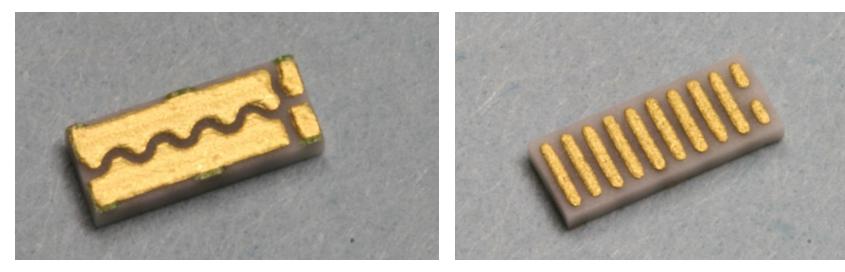
Interposers and Hermetic Packages for SiC and GaN FETs

- Copper Plated PCTF[®] Metallization with PTV[™] Vias
- Near Chip Scale Packaging: Actual package is slightly larger than die
- Die with Flip Chip Interconnects
- .002" Copper Provides for heat spreading and lateral current flow

- Vias Provide Package Interconnects with low DC resistance below 1 m Ω and low lead inductance/capacitance

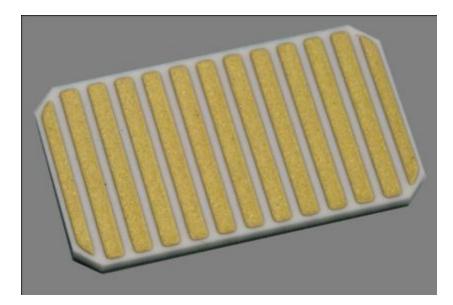
Why Ceramic for Si, SiC and GaN Interposers

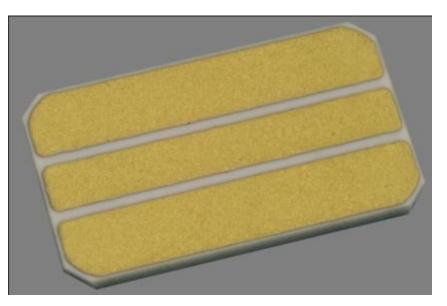
- Thermally conductive and mechanically rigid
- An interface material to compensate for TCE mismatch between semiconductor and PCB



Thermal Properties of Materials

Material	Alumina (Al ₂ O ₃)	PCTF Cu (.002") - Al ₂ O ₃ (.025")	FR-4	Si	SiC	GaN
CTE, ppm/°C	6.6	8.4	15.8	2.6	3.7	6.0
Thermal Conductivity, W/mx ^o C	25	32	.2	150	270	230


Interposers

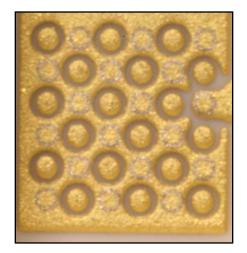

- Interposers Family for GaN MOSFETs
- .002-.003" Copper, Ni-Au Finish
- Flip Chip Die: Connected through Plugged Vias
- Size: .500" x .200" x .050"

Interposers

- Interposers Family for Si and SiC IC's to 25 AMP
- .002-.003" Copper, Ni-Au Finish
- Flip Chip Die: Connected through Plugged Vias
- Size: .980" x .680" x .050"

Hermetic Interposer for GaN FET Transistor

<u>eGaNFET</u>


- New GaN device with High Speed Switching to replace STD MOSFET
- BGA Construction Requires Low DC Resistance/Inductance and Hermetic Connections (Vias)
- Alumina Ceramic with .002" Cu Plated Tracks and Plugged Vias
- Size: .220" x .150" x .050"
- Ceramic Frame Attached with Plated AuSn solder (top metallized for final hermetic seal)
- Flat ceramic Lid with Plated Gold Tin

Leadless Hermetic Package for GaAs MOSFET

High DC Current and High Power Package

REMTEC[®] Ceramic Packaging Solutions for Optimum Performance

- .002" Copper for heat spreading and lateral current flow (25 AMP)
- Size: .400" x .300" x .110"
- Vias with Low DC resistance below 1 mΩ and low lead inductance/capacitance

New Packages Reliability Testing

Testing was Performed in accordance with MIL-PRF-38534H Test Conditions per MIL-STD-883

Test	Method	Condition	Notes
Solderability	2003	At 245°C	
Thermal Shock	1011	С	15 C, -65 to +150°C
Mechanical Shock	2002	B, Y1 direction	
Constant Acceleration	2001	3,000 g's Y1 direction	
Hermetic Seal	1014	A4 (open package)	For hermetic packages only
Salt Atmosphere	1009	Α	

Conclusions

- Innovative Packaging Approach Has Been Developed Fully Realizing Capabilities of New High Switching Speed Flip Chip MOSFETs
 - Low Conductance Losses
 - High Frequency Capability
- Developed Leadless Ceramic SMT, Chip-Scale Packages Utilizing GaAs, GaN and SiC Flip Chip Devices
 - The Inter-digitation of Source and Drain Minimizes dc Resistance and Parasitic inductance

Conclusions

- A Variety of Various Cost Effective, High Performance Packages Has Been Developed, Fabricated and Tested
- Small Size Chip Scale Package
- Highly conductive, low inductance Interconnects
- Efficient Thermal Management
- Interposers and Hermetic Packages
- Reliability Testing per MIL-STD-883 Completed

Thank you for your attention!

