HybriDrive® Propulsion System

Cleaner, smarter power for Medium & Heavy Duty Vehicles

"Mechanical, thermal and packaging challenges of high voltage, high power electronics for heavy duty propulsion and power management applications."

APEC Conference 2012

By Stephen Kosteva Chief Engineer, Mechanical Systems- Hybrid Solutions

Drivers of Hybrids in Medium to Heavy Duty Vehicle Markets

Governmental Policies and Regulations

➤Energy Policies.

➢ Positive Environmental Impacts (lower emissions).

Green Image

Social Conscience.

Payback

- Payback is a function of
 - ✓ Fuel Prices.
 - ✓ Acquisition Cost.
 - ✓ Fuel Economy (System Performance).

✓ Reliability & Maintenance Costs (Operational & Life Cycle Costs).

Most Common Hybrid Architectures – series vs. parallel

- Electric Interconnect
- Mechanical Interconnect

Parallel Hybrid Drive Train

- Sized for full all-electric mobility
- No mechanical coupling of engine to road enables maximum control over engine operation
- Applicable for fuel cell or battery powered vehicles
- Ideal for urban Transit Buses

- · Sized for desired braking energy capture
- Engine still mechanically coupled to road; enables higher efficiency at highway speeds
- · Scalable for a wide range of duty cycles
- Ideal for trucks

Architecture choice dependent on application, vocation and duty cycle

Life and Reliability Requirements

- Longer life and more operating hours
- More aggressive duty cycle

Major Differences Have Significant Cost Impacts & Drive Very Distinct Design Philosophies

BAE SYSTEMS

Major Design Requirements Differences between Automotive to Heavy Duty Vehicles (cont)

Environmental Requirements

- More Mounting Location Options
- Higher Vibration Requirements
- Tighter Sealing and Humidity Requirements
- Direct Solar Exposure
- Larger Temperature Variations

Power and Size Requirements

>Larger vehicle weight requires more power

Higher power means more current and more heat dissipation

- Higher Voltage/Current/Heat drives Package Size
 - > Connectors, Capacitors, Bus-bars, Switches, Cables, Energy Storage, etc

Major Differences Have Significant Cost Impacts & Drive Very Distinct Design Philosophies

BAE SYSTEN

Life and Reliability Requirements

Automobiles

10 years
 125,000 miles
 6000 hours

Medium & Heavy Duty Trucks

12-15 years
 250,000 – 300,000 miles
 22,500 hours

Transit Buses

15+ years
500,000 miles
52,000 hours

Heavy Duty Vehicles Have Much Higher Hours of Operation per Service Life

3

Heavy Duty System Layouts vs. Automotive Layouts

Automotive:

- ESS and Control located in Passenger Compartment (Controlled Environment)
- Inverter and Transmission under hood

Trucks and Buses:

- · Components not located in passenger compartments
- More location options (OEM dependent)
 - Frame Rails
 - Roof
 - Rear Cab
 - Engine Compartments
 - etc

Different Mounting Options Opens Environmental Design Aperture

Governing Performance Specifications and Power Levels

0

	Power & Torque Levels	Performance Requirements	Environmental <u>Requirements</u>
	30-65 kW	OEM Specific	OEM Specific
	~250 Nm Crankshaft		
	70-120 kW 800 Nm Crankshaft	OEM Specific Vocation & Duty Cycle Specific	SAE J1455 ISO 16750
	150- 250 kW (motor) 150- 250 kW (Gen) 6900 Nm DriveShaft	White Book (USA)	SAE J1455 ISO 16750
Understanding Propulsion Torque & Power Requirements and Operational Duty Cycles are Key to a Robust & Viable Heavy Duty Solution			

Cycles are Key to a Robust & Viable Heavy Duty Solution

3

Packaging Cost Challenges for Heavy Duty Hybrid Power Electronics

Medium/Heavy Duty Commercial Vehicle Inverter Relative Component Cost Breakdown

With the Increase in Performance, Size, Duty Cycle, Life and Reliability Requirements, How do we meet the aggressive cost targets of a 5 year or less payback for trucks?

Focus on the Key Cost Driving Components

Insulated Gate Bipolar Transistor (IGBT) - Single Highest Cost Component

Optimize Silicon of Switching Devices (IGBTs)

BAE SYSTEMS

Insulated Gate Bipolar Transistor (IGBT) – LIFE & DUTY CYCLE

Inverter Switch Life is Dependent on

Vocation, Duty/Drive Cycle, Driver Habits, Cooling System

□ Life Prediction Tool Created:

- Transient Thermal Model (Simplified Representation)
 Foster vs. Cauer Model (simplicity vs physical meaning)
- Real Time Prediction of Junction and Substrate Temperatures Profiles
- Cycle Counting
- Life Damage Predictions
- System Optimization for DT

Can Be Adapted for On board Real Time Life Prognostics

Insulated Gate Bipolar Transistor (IGBT) - Opportunities for IGBTs

Examples of IGBT Life Curves

Higher Junction temperatures alone in SiC can reduce overall life → Need to be able to raise inlet

□ Also Need Higher Temperature... Film Caps, Circuit Card Components, Current Sensors, Connectors, etc.

Higher Temperature SiC → Itself is Not the Answer

Circuit Card Cost Opportunities – Lower Costs CCAs

Limit the number of Circuit Cards

- Reduces interconnect
- Increases reliability
- Less chassis mounting features

Limit size of circuit cards

- "Just Enough" Function
- Combine Control Function (Motor Control and System Control)

Leverage high volume automotive component cost

>Automotive components are typically lower temp.

Combine vibration support with thermal support

- Analysis tools to predict life of solder joints
- Low Cycle Fatigue (temperature)
- High Cycle Fatigue (vibration)

Heavy Duty Vehicles Have Much Higher Hours Operation per Service Life

Chassis Cost Opportunities – Lowering Metal Costs

□ Direct water cooled IGBTs simplify Chassis

- Low cost castings
- Less machining

□ Size Matters

- Smaller size lowers Material cost (\$/lb)
- Less coring, tooling, handling, finishing, etc

Use Common Hardware

Less time on costing machining tools

High Voltage/ High Current Connectors

Pluggable connectors simplify chassis but lower reliability.

Heavy Duty Vehicles Have Much Higher Hours Operation per Service Life

15

Laminating bus work is expensive

□ Custom caps can be tailored:

- Less chassis machining
- ➤Shaped for easier low cost assembly
- >Molding replaces expensive laminating on bus work

Custom DC-Link Filters Provide Compactness, Isolation and Ease of Assembly

High Voltage High Current Connector Considerations

Connector Type

- Bolted (ring terminal)
- Pluggable Connector

Voltage Isolation

creepage / clearance

Current Carrying Capacity

- ~200A 350 Arms (Parallel commercial vehicles)
- > ~700 1000 Arms (Series Transit Vehicles)
- □ IP Ratings >IP6K9K & IP67

Shield Terminations & Interlocks

Isolated & Low impedance

Common Electronics Performance Metrics

- ≻ Cost → \$/kW

- ≻ kVA

Other Variables

- Operating Voltage
- ➤ Efficiency
- Switching Frequency
- Control (machine or system control included)
- Peak Power vs Continuous Power
- At What Environmental Conditions
 - Ambient
 - Coolant Temperature
- ➢ Design Life/Duty Cycle

Major differences between *automotive* and *heavy duty* applications have significant cost impacts & drive very distinct design philosophies for power electronics.

➤ Commonly used Inverter Metrics (\$/kW, kW/kg) don't embody the differences.

➤Aggressive cost pressures still exist as *payback* is critical to OEMs and fleet operators.

>**IGBT optimization** is key to managing inverter costs with higher power/torque requirements and more aggressive duty cycles.

Combining function (*building block approach*) helps reduce costs by lowering part costs, assembly cost, and interconnect costs.

Mechanical, thermal and packaging challenges of high voltage, high power electronics for heavy duty propulsion and power management applications.

HybriDrive®

Series propulsion system

Transit Bus

Parallel propulsion system

Medium & Heavy Duty

Commercial Trucks

Questions?