Capacitor Technology for High Density and High Temperature Power Systems Used in EV, HEV and PHEV Automotive Applications

> John Prymak – KEMET Electronics Ian Clelland – Paktron Laird Macomber – Cornell Dubilier

DC Link & Filter Capacitors Hybrid and Electric Vehicles

Overview on the application of the "Double Bank Capacitor"

Slide #3
APEC 2012

Power Converter DC Link Capacitor

Function:

To support a DC network by supplying periodically high currents (High Power Decoupling)

General Requirements:

Life Expectancy: >10 years (20k hours in operation)

ESR:

Ripple Current:

low High capability

Proposed Capacitor Technologies:

- Film
- Aluminium Electrolytic

Automotive EV, HEV Drive DC-link

Capacitor Functions:

- a) enable quick energy transfer into IGBT circuit
- b) smooth out DC-bus voltage variation
- c) prevent ripple from interfering back to DC power source

DC-link (Film)

- Voltage capability requires no cascading
- Self-healing optimized with necked-down electrode patterns
- Self-healing maximized with polypropylene (PP)
- Higher cost solution

1 DC-link (Electrolytic)

- Requires cascading for high voltage (multiples of 2x to 9x for capacitance)
- Low temperature greatly reduces cap
- Dry-out over time results in lower cap, higher ESR, greater heat – eventually to short
- Lower cost solution

Design Conditions of DC-Link Capacitor

for 3 phase AC Motor Drive

Output V	690Vac
DC-Link Voltage	1,000Vdc
Max Ripple Voltage allowed	100V
Frequency	50Hz
Min Capacitance	500μF
Ripple Current	30A
DC-Link Frequency	300Hz
Ambient Temperature	75° C

Comparison of Film and Electrolytic Technologies

Dominant Film Types

Film	Code	Best Tol. (±%)	(C/Cn-1) -25℃ to 85℃	Aging (%/yr)	DF (Typ)	Max. Temp. (°C)
polypropylene	PP	1	-3%	0.2	0.05%	120
polyethylene napthalate	PEN	5	5%	0.4	0.48%	155
polyethylene terapthalate	PET	5	5%	0.4	0.50%	140
polyethylene sulfide	PPS	2	±0.5%	0.3	0.20%	260

Clelland, I., ITW Paktron and Laird Macomber, Cornell-Dublier; iNEMI 2006 Report - Passives

Impulse Voltage Test (Capacitor Self-healing)

Comparison between different materials:

FILM	С	Н	0	S	C/(H+O)
PPS	6	4	0	1	1.50
PEN	14	10	4	0	1.00
PET	10	8	4	0	0.83
PP	3	6	0	0	0.50

The graph shows what follows:

- the worst material is PPS;
- the best material is PP;
- PET is slightly better then PEN.

DC Link Capacitors Hybrid and Electric Vehicles

Essential questions for a DC Link capacitor are :

- What is the Capacitance and Voltage profile
- What is the AC Spectrum Frequency and Ripple Current
- What is the Ambient Temperature and possible Cooling
- What is the **Inductance** needed
- What are the Mechanical Stresses / Vibration and Shock
- What is the Mechanical Shape/Dimensions/Connections
- Is self-healing required? (Fail-open versus Fail-short)

Hybrid Vehicles' Internal Combustion Engine requires in general higher temperature capacitors than Full Electric vehicles

FILM Dielectric Technologies: PET, PEN, PPS, and PP

wound elements

- Film width up to 60mm
- Simple or series construction
- High Cap
- Max. voltage 2000Vdc
- DC-Link PET < 300V or PP

Stacked elements

- Film width up to 45mm
- Simple or series construction
- Typical x 100uF blocks
- Max. voltage 500Vdc
- DC-Link PET <300V or PP</p>

DC-Link Film Capacitors: Automotive <u>High</u> ripple & Cap & Temp Modules

- "Soft-winding Brick Thin Film
 - Dielectric : metalized polypropylene (PP) film, thickness<3.5µm
 - Winding : non-inductive type with flattened oval shape
 - Case : plastic or metal material
 - Terminals : high current screw or tinned copper bus-bar

- "Stacked" Brick
 - Dielectric : metalized polypropylene PP and polyethylene teraphthalate PET
 - Winding : non-inductive type with several stacked cut elements
 - Case : plastic or metal material
 - Terminals : high current screw or tinned copper bus-bar

Automotive DC-Link Capacitors Heat Dissipators, Soft Winding

DC-Link Capacitor for Hybrid Vehicle

Advances in Film Capacitors

- Ripple Current and Thermal Stability

Film Capacitors: Working Life Time

- Film Advantages:
 - High rated voltages (no need of series connections and balancing resistors
 - Stability vs. time of Capacitance and ESR
 - Long life
 - Low dissipation / high ripple current
 - Low losses and high efficiency
- Long life contributing factors:
 - new metallization configuration of the film,
 - plastic or metallic housing, sealed by epoxy or polyurethane resins,
 - new production process for the thermal treatment.
- Working life time at rated voltage using these technologies :
 - "Soft-winding for thin film in Brick" for Automotive applications : 20,000hours at 90°C ambient temperature.

DC Link Capacitor KEMET Commercial Solutions - Film

General Construction

Typical rated voltages:600-700 Vdcautomotive,(welders)(900 Vdcsolar converters1100 Vdcwind converters1300 Vdcwind converters)

Typologies:

Mainly dictated by the layout and the mechanical needs:

Individual or Box types for PCB mounting

- Most adaptable, least expensive
- Aluminum Can types for modular configurations (cable and bus bar)
- Cheaper than brick if less than 2000 µF required
- Less efficient in terms of dimensional occupation / flexibility of form factor
- Custom Brick for the best dimensional efficiency (cap density/volume)
- Can work at higher power / temperatures due to the special soft winding capacitive elements used that optimize the thermal dissipation

DC Link Capacitor Commercial Solutions – KEMET Electrolytic

General Construction

Typologies:

Snap-In types for low power drives/inverters/(UPS,)

PCB mounting

- ALC10, ALC40 (European manufacture)
- PEH506, PEH536 (Chinese manufacture)

Screw Terminal for medium to high power drives/inverters/(UPS)

- ALS30/31, ALS40/41, PEH200, PEH169 (European manufacture)
- ALS32/33, ALS42/43 (Chinese manufacture)

All electrolytic capacitors manufactured using extended cathode construction for enhanced thermal dissipation.

APEC 2012

DC Link Capacitor Commercial Solutions – CD Electrolytic

General Construction

Typologies: Snap-In types for low power drives/inverters/(UPS,)

PCB mounting

Screw Terminal for medium to high power drives/inverters/(UPS)

All electrolytic capacitors manufactured using extended cathode construction for enhanced thermal dissipation.

HEV Inverter Power Film Capacitor Cornell Dubilier

Paktron 500-volt Technology For On-Board Converters

Parameter	0.47µF	1.00µF	0.50µF
Capacitance Tolerance	$\pm 10\%$	$\pm 10\%$	±10%
Dissipation Factor	<u>≤</u> 1.0%	<u>≤</u> 1.0%	<u>≤</u> 1.0%
Insulation Resistance (M Ω)	>1000	>1000	>1000
Temperature Range (°C)	-55 to 125	-55 to 125	-55 to 125
ESR @ 500 kHz (Ω)	0.011	0.008	0.100
Irms @ 500 kHz (A)	6.2	9.5	5.8
Max dV/dt (V/µs)	120	120	120

Multilayer Polymer Film (MLP)

Stable under DC voltageStable under AC voltageChip is plastic with good TCEStable over temperatureNo aging mechanismResilient under thermal shockSelf-clearing thin electrodesStable under mechanical stressLow CostUltra Low ESRDissipation Factor ≤ 1%High dV/dtSMD and Thru-hole MountingFlame Retardant Enclosures

Detailed

LIGHTING/AUTOMOTIVE

HID – Xenon Technology

Lighting Automotive HID – Xenon vs. Halogen

H I D = High Intensity **D**ischarge Lamps **Benefits**:

- 3 x brighter
- 3 x longer life ~ 6000 hours
- 2 x as efficient ~ 35W

Process:

- Initial ionized Xenon gas in the bulb changes energy states.
- After initial ionization, the light-emitting arc is sustained by 90VAC
- The resulting arc emits high intensity light

xenon

halogen

HID – Xenon Two-Stage Electrical System

DC-DC Step-up converter: boosts the battery voltage to the ignition voltage.

DC-AC full bridge inverter:

converts DC to a low frequency square wave.

Two Inverter operating modes:

- i) voltage-source mode prior to ignition
- ii) current-source mode after ignition during steady state operation.

FILM – HID, Xenon **Capacitor Functions & Requirements**

C1: Ballast filter capacitor Function

filters the 100kHz current pulses from the flyback inverter

C2: Ballast boost capacitor energy preheats the lamp electrodes and enables the glow to arc transition of the HID lamp.

- Max working temperature: $135^{\circ}C \rightarrow$ high temperature rating
- High switching frequency 100 kHz \rightarrow low DF
- Severe vibration characteristics → robust design

C3 Ignitor Capacitor Function:

The ignition transformer, the ignitor capacitor and spark gap generate a high voltage pulse to ignite the lamp.

- Max working temperature: 150°C
- Max dv/dt :6000 V/μs
- Severe vibration characteristics → robust design
- → 170°C hotspot temperature
- \rightarrow 300 to 600A peak currents
- fit in the integrated ignitor assembly \rightarrow small dimensions

FILM – HID, Xenon Technology **KEMET** Solutions

C1 Ballast Filter Capacitor PEN: SWN / GMW

Capacitance range: 0.33μ F to 0.56μ F Rated voltage: 400 Vdc

C2 Ballast Boost Capacitor:

Capacitance range: 1μ F to Rated voltage: 250 Vdc

1.5μF

C3 Ignitor Capacitor PEN: HNS Series Capacitance range: 70nF to 120nF Rated voltage: 1000 Vdc

Paktron Technology For Lighting

100Vc	dc	250vdc		500Vdc		
4.00 μF	10.0 µF	1.00 µF	÷0÷	0.47 µF	1.00 µF	0.50 µF
188 Bit	887. 98212	R AL				Son Son
Part		Lead Spacing (in.)	(T :	nensions xHxW) (in.)	Temperat Range (°C)	
4.00 μF @ 10	0 Vdc	0.400	0.200x(0.380x0.394	-55 to 8	35
10.00 µF @ 1	00 Vdc	0.400	0.250x(0.995x0.500	-55 to 8	35
1.00 μF @ 25	0 Vdc	0.600	0.300x(0.440x0.700	-55 to 8	35
0.47 µF @ 50	0 Vdc	0.600	0.320x(0.625x0.700	-55 to 12	25
1.00 μF @ 50	0 Vdc	0.600	0.320x	1.135x0.700	-55 to 12	25
0.50 μF @ 50	0vdc	0.600	0.280x(0.540x0.650	-55 to 12	25 Sli

MLCC Lighting Application: Customer Requirement Example

- 500nF @ 430v and 150°C
- 3 positions currently available with 1812 pad sizes
- 4000 hour life time required at these conditions
- Customer considering Aluminum substrate
- Current Status:
 - Supplied 1812 330nF 500V rated prototypes
 - TCVC @ 330nF 430V and 150°C loses 80% of cap = 66nF X 3 positions = 198nF
- Based on these design constraints we recommend (see next slide)...

MLCC Lighting Application: KEMET Solution Alternatives

Option 1

- Use 3 KEMET KPS 2x1812 330nF J lead stacks with current pad layout
- Total cap 396nF at required conditions lower than 500nF but may be enough

• Option 2

- Use 3 KEMET KPS 2x2220 470nF J lead stacks but with larger pad layout for 2220
- Total cap 564nF at required conditions
 meeting the 500nF requirement

Thank You