High Temperature, High Performance SiC Power Modules for Next Generation Vehicles

535 W. Research Center Blvd. • Fayetteville, AR 72701 • (479) 443-5759

Introduction & Outline

CAD Modeling Techniques

Simulation Process

Example Simulation Results *Hermetic Power Module*

Packaging Overview

Inverter Testing High Performance Modules

Packaging Overview

Characterization & Switching Loss

JFET, DMOS, TMOS

Why High Temperature?

What if temperature was not a limitation?

Efficiency

Power Density

Size & Weight

Complexity

Cost

APE

Cooling Systems

Thermal Shielding

Design Tradeoffs

Extreme Environments

Wide Band Gap Semiconductors

INTERNA

IONAL

Military Vehicle Applications

More Electric Aircraft Applications

Inverter / Converter / Controller

Conditioned power to flight critical actuation system

APE

Emergency Generator

Independent source of electrical power

DC Battery

Uninterruptible, flight critical power

Starter / Generator

Source for redundant, flight critical power

Power Drive Electronics

Modulated power to flight control actuators

Electro-Hydrostatic Actuators

Redundant control power at each control surface

More Electric Aircraft (MEA) such as the F-35 could find SiC power electronics usage in or with:

ΙΝΤΕΓΝΑΤΙΟΝΑΙ

Design philosophy and processes

Adaptive CAD Modeling

Technique which allows for rapid configuration of a design with minimal user input.

Reference Sketches

Geometry is driven by relationships, equations, and named variables.

Assembly

Components are defined in context and driven by the referenced design variables.

Configurations

Thousands of variations may be rapidly analyzed with this process.

Adaptive Simulation

Using an adaptive CAD model and FEA simulation software, thousands of configurations may be investigated.

Base Plate material

geometry

Power Substrate

ceramic type ceramic thickness metal type metal thickness

<u>Die Attach</u>

material thickness

<u>Spacing</u>

die to die die to edge substrate to base plate substrate etch lines clearances tolerances

Tradeoffs

thermal performance stress & displacement weight vs. performance volume vs. performance plastic reinforcements

9

Example Base Plate Analysis

Simulation data is extracted and organized into design surfaces. Tradeoffs are identified and visualized.

(10)

INTERNA

 \cap

Example Die Attach Analysis

The thermal conductivity of the die attach exhibits diminishing returns.

11

Example Housing Analysis

Plastic reinforcing features are carefully designed for minimal stress & displacement.

Hermetic Modules design and features

APEC

System Comparison

High Performance Modules design and features

Full Systems

Modules have custom bussing and gate drives to achieve high performance switching

High Frequency Gate Drive With Bussing

Characterization

The paralleled switch positions exhibit very low on state resistances, even at high temperature.

Switching Energy

Extremely low switching losses may be achieved with simultaneous switching events and high freq. gate drives.

High Performance Module (Cree MOSFET)

MODULE INFO:

DEVICE INFO:

High Performance Module (Rohm TMOS)

DEVICE INFO:

Chip Dimensions: 4.8 mm x 4.8 mm

▶ R_{DS-ON} per chip =12 mOhms @ 25 °C
▶ 600 V

MODULE INFO:

▶16 Rohm TMOSFETs

- ▶8 Trench MOSFETs per switch position
- ➤ R_{DS-ON} Module =1.5 mOhms @ 25 °C

≻600 V, 1000 A

High Performance Module (Rohm TMOS)

3 devices in parallel

APE

These newly developed high performance SiC power modules can provide substantial system benefits, including:

<u>Increased</u>

efficiency power density

Reduced volume weight

Higher

junction temperatures ambient temperatures

INTERNATIONAI

Cree, Inc., Semisouth Laboratories, Inc., and Rohm Semiconductor.