Automotive Power Module Packaging: Issues and Technologies

Zhenxian Liang, Fred Wang, Laura Marlino Organization: ORNL Email: liangz@ornl.org Phone: 865-946-1467

APEC'11, Special Session 2.1 March 8, 2011

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

ORNL Power Electronics Packaging Program

Power electronics module packaging is one enabling technology for performance improvement and cost reduction

Automotive Power Module Qualification

Automotive Power Module Reliability Requirement

27,000 Power cycles @ Δ T=100°C, T_{imax}=150°C 10,000 Thermal cycles @ $\Delta T=80^{\circ}C$

Thoben M. etal, "From vehicle Drive Cycle to reliability testing of Power Modules," Power Electronics Europe, No.6, 2008, P.21

Temperature / Environm

Environment	
Ambient air -40°C to	

Reliability **Operational Life 15 years** Power Cycling 30.000 Coolant water -40°C to cycles @ **DT 100°C** Junction -40°C to 175°C Temperature Cycling 1000 cycles @ \(\Delta T 165°C)

Beckedahl P. etal, "A New Module Concept for Automotive Applications PCIM07

Power cycling curve (short cycle)

Power device lifetime as a function of delta Ti

Alain Calmels www.imapsfrance.org/ABSTRACT/.../MICROSEMI

135°C

105°C

Vibration 10g

Shock 50g

Automotive Power Module Cost Estimation

ational Laboratory

Power Semiconductor Cost Analysis

Cost= <u>Die size (S)</u> * <u>\$/unit area</u>

Semiconductor: Major Cost of Power Module;

Counted by Die Area;

Dependent on Device Structure

Increase Semiconductor Wafer Size (from 6" to 8");

Barrier: Mechanical Support of Thin Wafer (70um/kV)

From Si to SiC, GaN, etc.

Interaction of Power Module Parameters

Automotive Power Module: Comprehensive Design

Packaging Paradigm Shift and Challenges

Structural Optimization

Double sided Electrical Interconnection;

Integrated cooling (plus Microchannel, spray, jet, phase change, etc)

HT Material Integrity

High-melting bonding (Ag, Au and alloys); Inorganic encapsulate (glass);

Nano Electrical and Thermal materials

CTE Matching

CTE modified Materials (AlSiC, Cu-x, Al-x, Si3N4),

Structure/buffer optimization

Processing Advance

Reflowing, Brazing /Sintering, Transient liquid phase bonding, thermal press

bonding, deposition, Ceramic spray,

ORNL Advanced Power Module Packaging Lab Facility Layout

Evaluation of Advanced Automotive Module Packaging Technologies

	Toyota LS600	Toyota Prius III	Infineon Hybridpack2	Mitsubishi TPM	Semikron SKiM
Module				Front Side	
Features	Heat sink Cooling tube	Punched plate Cold plate (Al)		Main Dode Lead Solder Mire Control Lead Heat Resin Freider TCIL Cu Fail Solder IOBT	TO THE PARTY OF
Advantage	 Double sided planar interconnection; No baseplate; Double sided cooling. 	 Direct bond cooler; No base plate; No TiM layer; Al Ribbon bond. 	 Direct cooled base plate; No TiM layer; Integrated cooler. 	 No DBC substrate; Phase leg unit; Direct planar lead bond; 	 No base plate; Press contact; Ag sintered die attach.
Disadvantage	 Complex inverter (electrical and thermal) assembly; Ceramic slice insulation and double TiM layers. 	 Stress relax buffer layer worsen thermal conductivity; Large electrical parasitic parameters. 	 Difficulty in pin fin manufacture; Large electrical parasitic parameters; Difficult integration of cooler. 	 Double TiM layers; Poor thermal of TCIL; Module level assembly needed. 	 Mechanical integrity concern; Large electrical parasitic parameters; Poor TiM layer uniformity.

Microstructure and Mechanics Analysis of Packaging Constitution

Packaging Electrical Parasitic Parameters Extraction

for the Department of Energy

Thermal Resistance Simulation In Power Module

Integrated Cooling Power Module

15 Managed by UT-Battelle for the Department of Energy

An Integrated Phase Leg Packaging Design

for the Department of Energy

High Temperature Limit of Si Switch

High Temperature Packaging: Material CTE

Matching

200°C Reliable Operation Temperature

High Temperature Packaging: Structure Optimization

High Temperature Packaging: Die Attachment

Ag on Cu

Pd on Al

Si IGBT (1200V): High Temperature Operation

I-V Characterization

Power Loss vs Temperature

Leakage Current at Block State

High Power Density Integrated Traction Drive

Summary

Developing power electronics packaging is a vital effort to meet DOE VTP targets in products' performance improvement and cost reduction.

Advancing packaging technology with materials development, structure optimization and processing innovation.

>Improving cost-effectiveness, efficiency and reliability of power electronics modules by improved electrical performance, reliable high temperature operation, efficient thermal management, highly functional integration and power density.

Acknowledgement

The automotive power electronics packaging works have been primarily supported by DoE under Vehicle Technology Programs. The authors would also like to thank their colleagues, Andrew A. Wereszczak, Randy Wiles, Puqi Ning, Madhu Chinthavali, all with ORNL for the contribution to this presentation

Thanks And Questions?

