IGBT Power Module for HEV and EV

Dr. Birol Sonuparlak Tom Sleasman March 8, 2011

A Global Leader In Specialty Materials Based Solutions for A World Of Applications Demanding Exceptional Performance and Reliability

High Performance

Power Electronic Solutions

March 8, 2011

CORPORAT

ROGERS

INTRODUCTION

- HEV/EV Market and Motivation
- Engineered Materials Developed for IGBT Power Module Cooling
 - Baseplate selection
 - Cooling systems
 - Joining processes in Power Module manufacturing
 - Pin Heat sink/Baseplate Plating/Coating Options
 - Solder Selection
 - Joining
- Summary

EV/HEV Motivation

• Reduced Fuel Consumption

- Electric motor assists the Internal Combustion Engine (ICE) to reduce fuel consumption as vehicle starts & accelerates.
- No ICE in EV
- Improved Performance
 - Electric motors deliver maximum torque from zero rpm for powerful start and added power for acceleration.

• Environmental Performance

 Reduced or eliminated CO₂ emissions improves environmental performance through reduced fuel consumption.

Improvements Implemented by HEV/EV Power Module Technology

Traction Type Power Module

- 5 mm AlSiC baseplate
- Lead free solder preform
- Vacuum Soldering
- Grease interface between baseplate and Heat sink
- Nickel plating

Automotive Power Module

- 3mm AISiC pin heat sink
- Lead free solder paste
- Eliminate vacuum soldering
- Eliminated grease interface
- Ni plating or copper cold gas coating

Materials Used to Remove Heat in IGBT Modules

Copper Heat Sink vs AISiC Heat Sink in HEV/EV IGBT Power Module

	AISiC Pin Heat Sink	Copper Pin Heat Sink
Manufacturing process	Pressure Infiltration casting	Metal Injection Molding
Substrate	Aluminum Nitride	Aluminum Oxide
Performance	AISiC Pin Heat Sink/AIN combination has better performance than Copper Heatsink/Alumina Combination	
Pin Shape	Round, Diamond & more	Round, Diamond & more
Pin density	More Pin density in copper	
Pin Height	3.5 mm	7 mm
Thermal Conductivity (W/m-K)	180-240	400
CTE (ppm/K)	8	17
Density	3 g/cc	8.9 g/cc
Weight 213mmx92mmx3mm 3.5mm pin height	245 g	726 g

Effect of Thermal Cycling

 Due to closer match of CTE's between AlSiC (CTE=7 ppm/K) and AlN (CTE=4.5 ppm/K) no delamination is observed in the solder layer between ceramic substrate and AlSiC baseplate even after 20000 thermal cycles (ΔT=80°C), while clear solder failure is observed when the baseplate is copper (CTE=17 ppm/K)

200 cycles (Cu)

2000 cycles (Cu)

ROGERS

CORPORATION

1000 cycles (Cu)

4000 cycles (Cu)

20 000 cycles (AISiC)

Courtesy of Infineon Technologies AG

HEATWAVE[™] AISiC Microstructure Used in Current IGBT Modules

9

AISiC CTE Model

March 8, 2011

10

AISiC Thermal Conductivity

Liquid Cooling Systems

- Cold Plates
 - Machined or extruded aluminum plates with or without inserted copper tubes
 - Need to use grease as thermal interface materials
- Pin Fins
 - Copper, AlSiC or aluminum pin heat sinks with various pin geometries
 - Eliminates the need for thermal interface materials

ShowerPower

- Eliminates the need for pin fin
- More homogeneous cooling
- Bulging of baseplates is a problem when high pressure is required
- Liquid Cooled DBC Substrate
 - Cooling channels are integrated directly to DBC
 - Eliminates baseplate
 - Produced by joining various copper layers with different hole pattern to DBC

Pin Fin Cooling

- Efficient cooling system
- Broad variety of pin geometries
- CTE Match to DBC Substrate
- High thermal conductivity for heat dissipation
- Tight dimensional tolerances without machining

Danfoss ShowerPower®

- CTE match to DBC substrate
- High thermal conductivity for heat dissipation
- Homogeneous cooling
- Cooling can be tailored
- Good thermal performance at a low pressure drop

Courtesy of Danfoss Silicon Power GmbH

14

Liquid Cooled DBC Substrate

Soldering AISiC Baseplate to DBC

- Solder Options
 - Solder paste
 - Solder Preform
- Solder Compositions
 - Sn-37Pb
 - Sn-3.5Ag
 - Sn-3Ag-0.5Cu
- Soldering reflow Profile
 - 15°C to 30°C above the melting point of solder composition
- Baseplate surface Finish
 - Nickel plating
 - Copper Cold Gas Coating

Solder Preform versus Solder Paste

Solder Paste

- No fixture Required
- Low cost/Large Volume adaptable using screen printing
- Solder Void is >5%
- Requires cleaning in most cases
- Inert gas continuous soldering is possible
- Both Sn-Pb and lead free solder pastes are available
- Shelf life and specific Storage conditions exist

Solder preform

- Soldering fixture is required for locating preform
- Requires solder preform cutting/coining is required
- Solder void <5%
- Requires vacuum soldering and soldering is batch process
- Both Sn-Pb and Lead free solders are available
- No solder preform life issues

Criteria For Solder Joining to AlSiC Pin Heat Sink Using Wetting Angle

Very Good Wetting angle <10° Very Good to Acceptable Wetting angle =10°-20° Not Acceptable Wetting angle >20°

Solderability with various Solders

Copper Cold Gas Coating Solder Paste-Sn-3Ag-0.5Cu Contact Angle <10°

Electroless Ni Plating Solder Preform-Sn-37Pb Contact Angle <10°

Electroless Ni Plating Solder Preform-Sn-3Ag-0.5Cu Contact Angle <10°

Alternative Available AlSiC Compositions

CTE = 12 ppm/K TC = 183 W/m-K CTE = 5.3 ppm/K TC = 230 W/m-K

20

Continuous Improvement In IGBT Power Module design

Performance Improvement

- IGBT semiconductor performance at junction temperature above 200°C.
- Increasing T_{j,op} from 125°C to 175°C allows to combustion engine coolant to cool the power electronics w/o need of a separate cooling circuit.
- Improved reliability in joining technologies. At T_{j,op=}175°C, solder fatigue and wire bond lift-off failures limit power cycling/thermal shock lifetime.

Material Challenges

- Lower cost water cooled integrated heat sink
- High reliability MMC/ceramic combination with good thermal performance

Future

Hybrid Composites

AlN in-situ joined to AlSiC

Ceramics in-situ Joined to AISiC

Aluminum Joint Between Ceramic and AlSiC

Summary

- HEATWAVE[™] AISiC CTE and Thermal Conductivity can be Tailored to Meet Application Requirements
 - CTE 5 ppm/K to 15 ppm/K
 - TC As High as 230 W/m-K
- HEATWAVE[™] Hybrid Composites Allow Designers to use AlSiC for Applications Which Require Very High Heat Dissipation.
- Pressure Infiltration Process can be Utilized to Design Hybrid Composites for Various Unique Applications.

