Carbon Nanotube Solutions for Packaging and Wireless Sensors

Jim Lamb*, Liyong Diao, Christopher Landorf
Jordan Valley Innovation Center (JVIC)
Springfield, Missouri, USA
jlamb@brewerscience.com

APEC 2013 – IS2.4.3
March 21, 2013
Outline

• Why Carbon Nanotubes (CNTs)?
• Carbon Electronics Center
• Materials Development Goals
• Electronics-Grade CNT Solutions
• Highly Conductive CNT Platform for Easy Application
• High-Solids CNT Platform for Screen-Printing Applications
• Use in Sensor Device Technology
• Summary and Future Directions
So Why Carbon Nanotubes?

- Semiconducting or metallic with a chirality-dependent band gap
- Ballistic conductivity: $\sim 10^8$ S/m
- High current-carrying capacity: 4×10^9 A/cm2; $\sim 1000x$ of Cu
- High thermal conductivity: ~ 3000 W/mK; ~ 385 W/mK Cu
- High Young’s modulus: ~ 1 Tpa
- Extreme maximum tensile strength: ~ 30 GPa
- Very high aspect ratio: ~ 0.5-1.2 nm diameter length, 1-20 µm typical, but as long as 1-10 mm and even > 10 cm observed
- High thermal stability in air: $\sim 700^\circ$-750$^\circ$ C
- Radiation hardened for space applications
- Highly corrosion resistant compared to metals
What Are the Obstacles to Adoption?

- One dimensional; key properties along the length
- CNT manufacturing produces large mixtures of different chirality
 - Mixtures of semiconducting and metallic CNTs
 - Difficult to separate in scalable processes
- Defects in tubes and contamination with catalyst metals
- Poor solubility makes coating and printing inks difficult
- High cost of raw materials makes development expensive

Breaking these barriers is Brewer Science’s focus at the Carbon Electronics Center
We deliver solutions to these markets

Trusted high-volume manufacturing (HVM) supplier to top-tier semiconductor manufacturers for > 30 years
Carbon Electronics Center

Chemical
- Carbon Nanotubes: Dispersion, Purification, Functionalization, Enrichment
- Other Materials: Organic Polymers, Dielectrics, Metals

Applications and Deposition
- Formulation: Application/Deposition Specific
- Deposition: Screen, Gravure, Flexo, Ink-Jet, Spray, Spin, Aerosol Jet®

Device Design, Fabrication, and Testing
- Conductive Layers: Transparent, Trace, and RFID Antenna
- Devices: TFTs, Inductors, Capacitors, Diodes
- Sensors: Environmental, Bio, Chemical, Mechanical

Aerosol Jet® is a registered trademark of Optomec
Materials Development Goals

- Surfactant-free aqueous and solvent systems
- Dispersions with stable solubility
- Adhesion with no binders
- Low-temperature curing to achieve performance
- Scalable manufacturing
Electronics-Grade CNT Solutions

• Market entry in 2006 as commercial supplier of microelectronics-grade CNTRENE® C100 family of materials by license from Nantero:
 – Surfactant-free aqueous system
 – Metallic ion purity < 5 ppb levels
 – Coating quality required for IC production

• Processing for NRAM™ and sensor devices
 – Applied and processed with traditional IC device equipment and processes
 – Cure temperatures below 250° C allow freedom to use in both front and back end of device layer stacks

NTRENE® is a registered trademark of Brewer Science, Inc.
NRAM™ is a trademark of Nantero
NRAM™ Device for Embedded Memory

• Key benefits of NRAM™ cell
 – Universal non-volatile structure
 – Fast 20-ns set/reset speeds
 – Rugged; operating >10 years at 300°C
 – Radiation-hardened memory structure
 – Low power consumption
 – Flexible device stack placement

• How it works
 – Resistive cell: high/OFF, low/ON state
 – Voltage used to read, set, and reset
 • Low read voltage to test OFF/ON state
 • Medium voltage attracts CNTs together through van der Waals force – ON state
 • Higher voltage induces CNT phonon excitation overcoming the van der Waals force separating CNTs – OFF state
Soluble, Highly Conductive Functionalized CNT Platform

- Surfactant free
 - Aqueous and water/solvent dispersions with concentrations of 0.5-2.0 g/L
 - Low viscosity, typically < 10 cP at 1.5 g/L
 - Broad formulation range; many deposition types:
 - Optomec Aerosol Jet® Technology
 - FujiFilm Dimatix® Ink-Jet Material Printer
 - Drawdown Bar/Mayer Rod Application
 - Spray Coating
 - Screen Printing

- Dispersions stable for > 3 months at 21°C
- Good adhesion by repeated bend testing
- Low-temperature curing at 110° - 150°C
- Scaled from lab to liter scale

FujiFilm Dimatix® is a registered trademark of FujiFilm.
Soluble, Highly Conductive Functionalized CNT Platform

Film optical properties at 550 nm and film electrical performance

<table>
<thead>
<tr>
<th>Optomec Aerosol Jet® Technology</th>
<th>FujiFilm Dimatix® Material Printer</th>
<th>Spray Coating</th>
<th>Drawdown Bar Coating</th>
<th>Screen Printing</th>
</tr>
</thead>
<tbody>
<tr>
<td>%T</td>
<td>Sheet R (Ω/Sq)</td>
<td>%T</td>
<td>Sheet R (Ω/Sq)</td>
<td>%T</td>
</tr>
<tr>
<td>93</td>
<td>3,810</td>
<td>93</td>
<td>1,340</td>
<td>91</td>
</tr>
<tr>
<td>90</td>
<td>650</td>
<td>90</td>
<td>980</td>
<td>90</td>
</tr>
<tr>
<td>87</td>
<td>830</td>
<td>86</td>
<td>323</td>
<td>86</td>
</tr>
<tr>
<td>85</td>
<td>450</td>
<td>85</td>
<td>530</td>
<td>85</td>
</tr>
<tr>
<td>78</td>
<td>178</td>
<td>83</td>
<td>400</td>
<td>80</td>
</tr>
<tr>
<td>49</td>
<td>53</td>
<td>70</td>
<td>109</td>
<td>70</td>
</tr>
</tbody>
</table>
Inks for Optomec Aerosol Jet® Technology Process

- Inks provided as aqueous or water/solvent formulations
- Shelf life exceeds 3 months at room temperature
- Broad substrate compatibility: PET, polyimide, glass, silicon, paper, printed circuit board, and many others
- Print fine structures (down to 25 µm) or area films
- Transparent conductive: 450 Ω/sq at 85%T and 650 Ω/sq at 90%T at 550 nm
- Conductive trace applications: < 50 Ω/sq with conductivity performance to ~73,000 siemens/m
- Cures on platen so no additional curing required
Ink for FujiFilm Dimatix® DMP-2800 Printer

- Used a tuned water-solvent mix for 10-pL drop volume cartridges for PET and paper substrates
- Shelf life exceeds 3 months at room temperature
- Print structures (down to 75 µm) or large-area films
- Transparent conductive: 530 Ω/sq at 85%T and 980 Ω/sq at 90%T at 550 nm
- Conductive trace applications: < 150 Ω/sq with conductivity performance to ~24,000 siemens/m
- Requires curing between 110°C and 150°C

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>98%T at 550 nm</td>
<td>100,000 Ω/sq</td>
<td>95%T at 550 nm</td>
<td>91%T at 550 nm</td>
<td>85%T at 550 nm</td>
</tr>
<tr>
<td>95%T at 550 nm</td>
<td>60,000 Ω/sq</td>
<td>91%T at 550 nm</td>
<td>85%T at 550 nm</td>
<td>530 Ω/sq</td>
</tr>
<tr>
<td>91%T at 550 nm</td>
<td>2,000 Ω/sq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85%T at 550 nm</td>
<td>530 Ω/sq</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All CNTs printed on PET
CNT Ink for Spray Coating

- Aqueous solutions from 0.5 to 2.0 g/L
- Shelf life exceeds 3 months at room temperature
- Print patterns down to 50 µm with stencil; large-area films depend on platen size
- Transparent conductive: 300 Ω/sq at 85%T and 685 Ω/sq at 90%T at 550 nm
- Conductive trace applications to 0.5 Ω/sq at ~5-µm film thickness
- Cures on heated platen, no additional curing step
- Broad substrate compatibility

Spray-coated CNT on polyimide film; inductor/capacitor RC circuit for wireless temperature sensor

- 93%T at 550 nm
- 1520 Ω/sq, 1 pass

- 89%T at 550 nm
- 754 Ω/sq, 2 passes

CNTs printed on PET
Drawdown Bar/Mayer Rod Coating

- Tuned water/solvent mix for PET substrates was used
- Shelf life exceeds 3 months at room temperature
- High-speed large-area films on plastic substrates
- Transparent conductive: 870 Ω/sq at 85%T and 1800 Ω/sq at 90%T at 550 nm
- Requires curing between 110° C and 150° C

CNTs printed on PET

- 93%T at 550 nm
 - 3300 Ω/sq
 - 7-gauge wire

- 85%T at 550 nm
 - 870 Ω/sq
 - 12-gauge wire

- 83%T at 550 nm
 - 650 Ω/sq
 - 20-gauge wire
Highly Conductive Screen-Printing Paste Platform

- Independent single-walled conductive CNT platform
- Surfactant-free solvent-based system; from 0.1–8.0 grams of CNTs per kg of paste
- Shear thinning system designed for screen-printing performance
- Demonstrated on wide range of screen-printing materials and screen meshes
- Dispersions stable for > 3 months at 21°C, require only simple mixing prior to use
- Low-temperature curing at 110° -150°C
- Scaled from lab scale to 1-kg batches
- Transparent conductive: 1,000 Ω/sq at 85%T and 2,780 Ω/sq at 90%T at 550 nm
- Conductive trace applications to 6 Ω/sq with a single pass at ~ 3.2-μm film thickness

Screen-printed CNT paste on PET: a) 3 passes, 1 Ω/sq; b) 1 pass, 6 Ω/sq
All-Orgnic Temperature Sensor

Handheld transmitter/receiver

All-organic sensing element
40 mm × 40 mm
All-Orgnic Temperature Sensor Evaluation

- HP 4195 network analyzer, transmission/reflection test kit, and prototyping board with BNC connectors
- Shifting of resonant frequency by 8 MHz with $\Delta T = 25^\circ C$
Interdigitated Electrode (IDE) Humidity Sensor

- Resistance change of more than 20% was observed while monitoring a moisture increase of 15% at room temperature
Summary

• Brewer Science brings its leadership in technology development and production competency to CNT materials for printed electronics

• Brewer Science introduces two new CNT platforms for printed electronics
 – Highly conductive, stable, surfactant-free, low-temperature-cured, low-viscosity system broadly compatible with most application technology and substrates
 – Stable thick-film paste for pattern and area screen-printing applications

• Next steps are to develop these materials for flexo, gravure, and slot die coating applications

• Brewer Science demonstrated the use of the above materials in a passive, all-organic temperature sensor system

• Brewer Science’s goal is to bring the unique properties of CNTs in easy-to-use production-capable platforms
Acknowledgements

• Brewer Science, Inc.
 – Chris Landorf – Functionalization of highly conductive platform, spray and drawdown bar
 – Vijaya Kayastha – Inks and process for Optomec Aerosol Jet® technology
 – John Bledsoe – Ink and process for FujiFilm Dimatix® DMP2800 DMP system
 – Jacqueline Garrison – Screen-printing paste
 – Alex Diao – Device design, process, and test for all-organic temperature sensor

• Some of the information presented in this publication was prepared by Brewer Science, Inc., under award 70NANB10H001 from the National Institute of Standards and Technology (NIST), U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author and do not necessarily reflect the views of NIST, the Technology Innovation Program, or the U.S. Department of Commerce.

• Portions of information presented in this publication partially funded by NTEC/ARDEC, contract no. W15QKN-11-9-0001-RPP1-B.