

Combined Inductor and Transformer

Design
for Resonant

Converters

Dr. Jenna Pollock, Harley Davidson Motor Company APEC 2020 Industry Session

Agenda

- Isolated resonant converter design
 - Types of resonant tank combinations
- Example designs for resonant LLC
 - Low turns ratio
 - High turns ratio
- Characterization of designs
 - Small signal measurements
 - Power testing
- Comparison of results
- Summary

Motivation

- High-efficiency power converters
 - Isolation between energy storage systems
- Considerations for design optimization:
 - Application
 - Packaging constraints
 - Electrical specifications
 - Cost
 - Efficiency
- Challenge: Resonant transformer design
- Goal:

Optimize resonant tank design

Resonant Converters

- International Electrotechnical Commission definition:
 - Resonant converter:
 - converter using (a) resonant circuit(s) to provide commutation or to reduce switching losses
- Today's design examples:
 - Full bridge LLC dc-dc converter
 - P = 3.3 kW
 - V_{in} = 400 V
 - V_{out} = 250-450 V
 - Half-bridge LLC dc-dc converter
 - P = 500 W
 - V_{in} = 400 V
 - V_{out} = 12 V

Design Example: Low turns ratio

• Bi-directional 3.3 kW resonant CLLLC

Parameter	Value	Units
Turns ratio P:S	2:1	-
Power level	3.3	kW
Primary peak current	16	А
Frequency	250	kHz
Skin depth at 250 kHz	0.14	mm
Packing factor	0.35	-
Maximum allowable flux density	125	mT

Design Example: High turns ratio

• Uni-directional 500 W half bridge LLC

Figure 2. TMDSHVRESLLCKIT Circuit Diagram

Ref: http://www.ti.com/lit/ug/tidu256/

5/tidu256.pdf

Parameter	Value	Units
Turns ratio P:S	16:1	-
Power level	500	W
Primary peak current		А
Frequency	250	_o kHz
Skin depth at 250 kHz	0.14	mm
Packing factor	0.35	-
Maximum allowable flux density	125	mT

Analytical: Transformer Quality Factor, Q

- Consider the Q of the leakage inductance:
- $Q = \frac{\omega L}{R}$

- Inductive impedance
 - The energy stored in the space between the windings
 - Referred to the primary side
- Resistive impedance
 - Sum of DC resistance and proximity effect ESR
 - Secondary impedance reflected to primary side
- Design parameters
 - Air leakage path
 - Frequency range: 100 500 kHz
 - Core: power ferrite
 - Winding: litz wire

$$Q = \frac{\omega L_{leak,p}}{R_{tot,p}}$$

Initial Transformer Core Sizing

- Find number of turns for a given core size
 - Primary voltage waveform
 - Given maximum peak flux density

$$\lambda_{pp} = \int_0^{T/2} V_p(t) dt \qquad N_p = \frac{\lambda_{pp}}{\Delta B_{pp}}$$

$$N_{p} = \frac{\lambda_{pp}}{\Delta B_{\text{max}} \pi r_{core}^{2}}$$

$$P_{core,vol} = k_c f^{\alpha} \left(\frac{\Delta B}{2}\right)^{\beta}$$

- Winding loss
 - Primary and Secondary Current Waveforms
 - Assume Fr = 2

$$P_w = F_r R_{dc,p} I_{rms,p}^2 + F_r R_{dc,s} I_{rms,s}^2$$

Analytical: Inductive Impedance

• Choose configuration to achieve the required lea'---

inductance

$$L_{leak,p} = \frac{k_L}{b_w} \left(\frac{h_p + h_s}{3} + h_{leak} \right)$$

Barrel wound P:S

Sectional wound P:S

Constants:

$$k_L = \mu_0 N_p^2 I_{turn}$$

$$h_{ps} = h_p + h_s$$

Analytical: Resistive Impedance

• Assume:

$$N_p I_p = N_s I_s$$

- Space allocated to each winding is equal
- Refer both windings' ESR to primary side
- DC resistance:

$$R_{dc,tot,p} = \frac{k_d}{h_{ps}b_{w}}$$

• Proximity ESR:

$$R_{prox,tot,p} = \frac{k_p h_{ps}}{b_w}$$

Total winding Impedance

$$R_{total} = R_{prox,total} + R_{dc,total}$$

Constants:

$$k_d = 4 \frac{\rho I_{turn} N_p^2}{F_p}$$

$$k_p = \frac{F_p d_s^2 \rho I_{turn} N_p^2}{12\delta^4}$$

Factors affecting Q

- Find winding height to maximize Q
 - Take derivative with respect to h_{ps} and set = 0

$$h_{ps,opt} = \frac{1}{\frac{2}{3h_w} + \sqrt{\frac{4}{9h_w^2} + \frac{k_p}{k_d}}}$$

FEA: Inductance Impedance

- Model: Rectangular winding areas
 - Find aspect ratio for winding window
- Model: Wire windings
 - Includes effect of lead layout
 - Consider different winding constructions
- Magnetostatic simulations
 - Leakage inductance
 - Magnetic field plots
 - Short simulation time

FEA: Wire Winding Models

- Investigate winding patterns
- Understand effect of terminations

Barrel Wound

Stack Wound

FEA: Leakage Inductance Calculation

• Use total energy from convergence tab

$$E = \frac{1}{2}L\left(\frac{l_p}{\sqrt{2}}\right)^2$$

• Find inductance from:

Eddy current solver:

$$L_{leak} = \frac{2 * 2 * E}{I_p^2}$$

FEA: Resistive Impedance

- Layout of turns in winding window
 - Barrel
 - Stacked
- Litz-wire windings
 - Cost to meet Fr = 2?
- Solid wire windings
 - Exact solution for R_{ac} possible
 - Computationally expensive
 - Thermal simulations relatively easy

Designing Litz-wire Windings

Difficult to pick strand size and number of strands

$$P = \frac{\pi \omega^2 |(2r)^4 B^2}{128 \rho_{cu}} + P_{dc}$$

Valid where wire diameter is small compared to skin depth

$$\delta = \sqrt{\frac{\rho}{\pi \mu f}}$$
 $d \ll \delta$

 Need the average value of magnitude of the flux density over a winding region:

Inductor:
$$\langle |B|^2 \rangle$$

Transformer:
$$\begin{bmatrix} \left\langle \left| B_1 \right|^2 \right\rangle B_1 \cdot B_2 \\ \mathbf{r} \quad \mathbf{r} \quad \left| B_2 \right\rangle B_1 \cdot \left| B_2 \right\rangle \end{bmatrix}$$

Free Litz-wire Design Software

http://engineering.dartmouth.edu/inductor/index.shtml

 \vdash

Prototypes: Small Signal Measurements

Design 1:

Design 2:

Design 3:

Parameter	Primary	Secondary	Primary	Secondary	Primary	Secondary
Frequency, kHz						
Rdc, milliohms						
Rac, milliohms						
Lm, uH						
Lleakage, uH						
C,interwinding, pF						
Weight, grams						

Z

Prototypes: Power Measurements

Parameter	Design 1:	Design 2:	Design 3:	Design 4:	Design 5:	Design 6:
Input power, W						
Vin, V						
Vout, V						
Frequency, kHz						
Lr, uH						
Cr, uH						
Efficiency, %						

Comparison of Designs

Conclusions

- Many possible ways to create resonant tanks
- Best design depends on application requirements
 - Packaging constraints
 - Performance requirements
 - Cost targets
- Design examples show opportunities for different applications

Thank you for your attention!

Questions?

Thank you

- My Harley Davidson team
- PSMA Magnetic Committee
- Rubadue Wire
- Ferroxcube
- TDK

References

- J. D. Pollock and C.R. Sullivan, "Design Consideration for High-Efficiency Leakage Transformers," IEEE APEC 2015
- G. Gamache, "Design and optimization of a low-porfile, low-loss resonant converter transformer," in MS Thesis, Dartmouth College, 2011.
- G. E. Gamache and C. R. Sullivan, "Resonant converter transformer design and optimization," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 590–597.
- J. D. Pollock, T. Abdallah, and C. R. Sullivan, "Easy-to-use CAD tools for litz-wire winding optimization," in 2003 IEEE Applied Power Electronics Conference, vol. 2, 2003, pp. 1157–1163.
- Dartmouth Magnetic Component Research Web Site, http://engineering.dartmouth.edu/inductor.
- C. R. Sullivan and R. Zhang;, "Simplified design method for litz wire," in IEEE 29th Annual Applied Power Electronics Conference, 2014, pp. 2667–2674.
- E. C. Snelling, Soft Ferrites, Properties and Applications, 2nd ed. Butterworths, 1988.
- C. R. Sullivan, "Optimal choice for number of strands in a litz-wire transformer winding," IEEE Transactions on Power Electronics, vol. 14, no. 2, pp. 283–291, 1999
- Special Section on Battery Energy Storage and Management, "Modeling and Controller Design of a Bidirectional Resonant Converter Battery Charger", Zakariya M. Dalala, Zaka Ullah Zahid, Osama S. Saadeh, Jih-Sheng Lai

