Combined Inductor and Transformer Design for Resonant Converters
Agenda

- Isolated resonant converter design
 - Types of resonant tank combinations
- Example designs for resonant LLC
 - Low turns ratio
 - High turns ratio
- Characterization of designs
 - Small signal measurements
 - Power testing
- Comparison of results
- Summary
Motivation

- High-efficiency power converters
 - Isolation between energy storage systems
- Considerations for design optimization:
 - Application
 - Packaging constraints
 - Electrical specifications
 - Cost
 - Efficiency
- Challenge: Resonant transformer design
- Goal:

 Optimize resonant tank design
Resonant Converters

• International Electrotechnical Commission definition:
 • Resonant converter:
 • converter using (a) resonant circuit(s) to provide commutation or to reduce switching losses

• Today’s design examples:
 • Full bridge LLC dc-dc converter
 • $P = 3.3$ kW
 • $V_{in} = 400$ V
 • $V_{out} = 250$-450 V
 • Half-bridge LLC dc-dc converter
 • $P = 500$ W
 • $V_{in} = 400$ V
 • $V_{out} = 12$ V
Design Example: Low turns ratio
• Bi-directional 3.3 kW resonant CLLLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns ratio P:S</td>
<td>2:1</td>
<td>-</td>
</tr>
<tr>
<td>Power level</td>
<td>3.3</td>
<td>kW</td>
</tr>
<tr>
<td>Primary peak current</td>
<td>16</td>
<td>A</td>
</tr>
<tr>
<td>Frequency</td>
<td>250</td>
<td>kHz</td>
</tr>
<tr>
<td>Skin depth at 250 kHz</td>
<td>0.14</td>
<td>mm</td>
</tr>
<tr>
<td>Packing factor</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>Maximum allowable flux density</td>
<td>125</td>
<td>mT</td>
</tr>
</tbody>
</table>
Design Example: High turns ratio

- Uni-directional 500 W half bridge LLC

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns ratio P:S</td>
<td>16:1</td>
<td>-</td>
</tr>
<tr>
<td>Power level</td>
<td>500</td>
<td>W</td>
</tr>
<tr>
<td>Primary peak current</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Frequency</td>
<td>250</td>
<td>kHz</td>
</tr>
<tr>
<td>Skin depth at 250 kHz</td>
<td>0.14</td>
<td>mm</td>
</tr>
<tr>
<td>Packing factor</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>Maximum allowable flux density</td>
<td>125</td>
<td>mT</td>
</tr>
</tbody>
</table>

Ref: http://www.ti.com/lit/ug/tidu256/tidu256.pdf
Analytical: Transformer Quality Factor, Q

- Consider the Q of the leakage inductance:
 \[Q = \frac{\omega L}{R} \]

- Inductive impedance
 - The energy stored in the space between the windings
 - Referred to the primary side

- Resistive impedance
 - Sum of DC resistance and proximity effect ESR
 - Secondary impedance reflected to primary side

- Design parameters
 - Air leakage path
 - Frequency range: 100 – 500 kHz
 - Core: power ferrite
 - Winding: litz wire

\[Q = \frac{\omega L_{\text{leak},p}}{R_{\text{tot},p}} \]
Initial Transformer Core Sizing

- Find number of turns for a given core size
 - Primary voltage waveform
 - Given maximum peak flux density

\[
\lambda_{pp} = \int_0^{T/2} V_p(t) dt
\]

\[
N_p = \frac{\lambda_{pp}}{\Delta B_{\text{max}} \pi r^2_{\text{core}}}
\]

\[
P_{\text{core,vol}} = k_c f^\alpha \left(\frac{\Delta B}{2} \right)^\beta
\]

- Winding loss
 - Primary and Secondary Current Waveforms
 - Assume Fr = 2

\[
P_w = F_r R_{dc, p} I_{\text{rms}, p}^2 + F_r R_{dc, s} I_{\text{rms}, s}^2
\]
Analytical: Inductive Impedance

- Choose configuration to achieve the required leakage inductance

\[L_{\text{leak,p}} = \frac{k_L}{b_w} \left(\frac{h_p + h_s}{3} + h_{\text{leak}} \right) \]

Barrel wound P:S

Sectional wound P:S

Constants:

\[k_L = \mu_0 N_p^2 I_{\text{turn}} \]

\[h_{ps} = h_p + h_s \]
Analytical: Resistive Impedance

- **Assume:**
 \[N_p I_p = N_s I_s \]
 - Space allocated to each winding is equal

- Refer both windings’ ESR to primary side

- **DC resistance:**
 \[R_{dc,\text{tot},p} = \frac{k_d}{h_{ps} b_w} \]

- **Proximity ESR:**
 \[R_{prox,\text{tot},p} = \frac{k_p h_{ps}}{b_w} \]

- **Total winding Impedance**
 \[R_{total} = R_{prox,\text{total}} + R_{dc,\text{total}} \]

Constants:

\[
\begin{align*}
k_d &= 4 \frac{\rho_{\text{turn}} N_p^2}{F_p} \\
k_p &= \frac{F_p d_s^2 \rho_{\text{turn}} N_p^2}{12 \delta^4}
\end{align*}
\]
Factors affecting Q

\[Q = Q_0 + \frac{h_w}{h_{ps}} - 2 \]

\[Q = Q_0 + \frac{k_d}{k_p h_{ps}^2} \]

Include 2D and 3D effects:
- Core geometry
- Winding positions
- Termination locations

Cost for $F_r = 2$

- Find winding height to maximize Q
 - Take derivative with respect to h_{ps} and set $= 0$

\[h_{ps, opt} = \frac{1}{\frac{2}{3h_w} + \sqrt{\frac{4}{9h_w^2} + \frac{k_p}{k_d}}} \]
FEA: Inductance Impedance

- **Model: Rectangular winding areas**
 - Find aspect ratio for winding window
- **Model: Wire windings**
 - Includes effect of lead layout
 - Consider different winding constructions
- **Magnetostatic simulations**
 - Leakage inductance
 - Magnetic field plots
 - Short simulation time
FEA: Wire Winding Models

- Investigate winding patterns
- Understand effect of terminations
FEA: Leakage Inductance Calculation

- Use total energy from convergence tab
- Find inductance from:

\[E = \frac{1}{2} L \left(\frac{I_p}{\sqrt{2}} \right)^2 \]

Eddy current solver:

\[L_{\text{leak}} = \frac{2 \times 2 \times E}{I_p^2} \]
FEA: Resistive Impedance

- Layout of turns in winding window
 - Barrel
 - Stacked
- Litz-wire windings
 - Cost to meet $F_r = 2$?
- Solid wire windings
 - Exact solution for R_{ac} possible
 - Computationally expensive
 - Thermal simulations relatively easy
Designing Litz-wire Windings

• Difficult to pick strand size and number of strands

\[P = \frac{\pi \omega^2 l (2r)^4 B^2}{128 \rho_{cu}} + P_{dc} \]

• Valid where wire diameter is small compared to skin depth

\[\delta = \sqrt{\frac{\rho}{\pi \mu f}} \quad \quad \quad d << \delta \]

• Need the average value of magnitude of the flux density over a winding region:

Inductor: \[\langle |B|^2 \rangle \]
Transformer: \[\begin{bmatrix} r \\ \langle |B_1|^2 \rangle & B_1 \cdot B_2 \\ r \\ B_2 \cdot B_1 & \langle |B_2|^2 \rangle \end{bmatrix} \]
Free Litz-wire Design Software

http://engineering.dartmouth.edu/inductor/index.shtml
Prototypes: Small Signal Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design 1:</th>
<th></th>
<th>Design 2:</th>
<th></th>
<th>Design 3:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency, kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rdc, milliohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rac, milliohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lm, uH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lleakage, uH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C, interwinding, pF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight, grams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prototypes: Power Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Design 1:</th>
<th>Design 2:</th>
<th>Design 3:</th>
<th>Design 4:</th>
<th>Design 5:</th>
<th>Design 6:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input power, W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vin, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vout, V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency, kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lr, uH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr, uH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Designs
Conclusions

• Many possible ways to create resonant tanks
• Best design depends on application requirements
 • Packaging constraints
 • Performance requirements
 • Cost targets
• Design examples show opportunities for different applications

Thank you for your attention!

Questions?
Thank you

- My Harley Davidson team
- PSMA Magnetic Committee
- Rubadue Wire
- Ferroxcube
- TDK
References

• Special Section on Battery Energy Storage and Management, “Modeling and Controller Design of a Bidirectional Resonant Converter Battery Charger”, Zakariya M. Dalala, Zaka Ullah Zahid, Osama S. Saadeh, Jih-Sheng Lai