Industry Session #: Energy Harvesting
Optimizing Piezoelectric Synchronized-Discharge Harvesters

Presented By –
Siyu Yang and Gabriel A. Rincón-Mora
Samsung Semiconductor Inc1 and Georgia Institute of Technology2
jimsyyang@gatech.edu1,2, Rincon-Mora@gatech.edu2

Wednesday, March 18, 2020
OVERVIEW

• Piezoelectric-Powered Sensors
• State of the Art
• Pre-Charge Symmetry
• Energy Transfers
• Output Power Comparison
• Conclusions
Piezoelectric-Powered Sensors

• **Wireless Microsensors**
 - Smart homes
 - Embedded Health Monitors
 - Vehicles
 - Industry

• **Features**
 - Environment and health monitoring
 - Automated home appliances and alarms
 - Automated pipelines
 - Saves money, energy, and lives
Piezoelectric-Powered Sensors

• **Wireless Microsensors Requirements**
 – Add intelligence
 – Processor
 – Sensor
 – Transmitter
 – Access difficult places
 – Compact, self-powered

• **Ambient energy sources**
 – Light
 – Temperature
 – Radiation
 – Chemical
 – Motion
 – Electromagnetic
 – Electrostatic
 – Piezoelectric ✓
Piezoelectric Powered Sensors

- **Piezoelectric material**
 - Non symmetrical positive and negative charge
 - Charge center shifts when strained
 - Charge appears at the surface

- **Piezoelectric transducer**
 - Cantilever with mass
 - Mass vibration \rightarrow alternating charge

- **Piezoelectric system**
 - Charger charges battery
 - MPPT tracks max. power point
 - Battery supplies loads
Piezoelectric Powered Sensors

- **Operation**: Vibration \rightarrow i_{PZ} charges C_{PZ}
- **Limit**: Low mechanical-electrical coupling factor
 \implies Vibration unaffected by voltage across C_{PZ}
 \implies i_{PZ} & $\Delta v_{PZ(OC)}$ stays the same for each half cycle
- **Solution**: Increase $v_{PZ} \rightarrow i_{PZ}$ charges C_{PZ} at higher voltage
 \rightarrow More drawn power

- **Limits**: Charger consumes power losses, and imposes breakdown limits
- **Objective**: Build charger with the highest drawn power, lowest losses, and least constraints.
State of the Art

• Basic Full Bridge

Operation: Diodes steer \(i_{PZ} \) into \(C_{REC} \)
Feature: Charge \(C_{REC} \) autonomously
Limits:
- Half of the charge lost
- \(P_{PZ} \) varies with \(v_{REC} \)

\[\therefore \text{MPP charger regulates } v_{REC} \]
State of the Art

- Switched Inductors

 Operation:

 i_{PZ} charges v_{PZ} across half cycles

 L_X collects charge and charge battery

 Features:

 Collect all charge

 Charge battery directly

 Limits:

 Need synchronizer

 $P_{PZ} \propto (\Delta v_{PZ(OC)})^2$
State of the Art

• Pre-Charging

 Operation:
 Before negative half cycle, pre-charge to \(-v_{PC}\)
 \(i_{PZ}\) is collected at higher \(v_{PZ}\), \(\rightarrow\) higher \(P_{PZ}\)

 Features:
 Collect all charge
 Charge battery directly
 2 switches
 \(P_{PZ} \propto \Delta v_{PZ(OC)}(\Delta v_{PZ(OC)} + v_{PC})\)

 Limits:
 Need synchronizer
 Need negative supply
Pre-charge Symmetry

• Symmetrical
 ▪ Pre-charge before each half cycle
 ▪ Reuse some energy at the end

• Asymmetrical
 ▪ No pre-charge before positive half
 ▪ Use all the energy at the end of positive half cycle to pre-charge
 ▪ Higher ohmic loss because of higher peak current
Energy Transfers

• Indirect Transfers

 ▪ Operation
 - CPZ energizes L_X for 0.25 t_{LC}
 - L_X then charges v_B

 ▪ L_X: Draws and delivers all P_{PZ}
 : High i_{L(PK)} & transfer time t_X

 ▪ Ohmic loss \propto i_{L(PK)}^2 t_X

 ▪ CPZ never connects directly to v_B
 : Indirect transfers

\begin{align*}
\text{CPZ Drain} \\
v_B = 1.5 \text{ V} \\
i_{L(PK)} = 34 \text{ mA} \\
C_{PZ} = 15 \text{ nF} \\
f_{VIB} = 100 \text{ Hz}
\end{align*}
Energy Transfers

• Indirect–Direct
 ▪ Operation
 o \(C_{PZ}\) energizes \(L_X\) for less than 0.25 \(t_{LC}\)
 o \(C_{PZ}\) and \(L_X\) then charge \(v_B\)
 \(v_{PZ}\) falls sinusoidally
 \(i_L\) also falls sinusoidally
 ▪ \(L_X\): steers energy it does not hold
 \(\therefore\) Lower \(i_{L(PK)}\) & \(t_X\) \(\rightarrow\) Lower loss
 ▪ \(C_{PZ}\) directly charges \(v_B\)
 \(\therefore\) Indirect–direct transfers

\[\begin{array}{c}
\text{CPZ Drain} \\
\text{C}_{PZ} = 15 \text{ nF} \\
f_{VIB} = 100 \text{ Hz} \\
v_B = 1.5 \text{ V} \\
i_{L(PK)}' = 34 \text{ mA} \\
\end{array}\]
Energy Transfers

• Indirect–Direct with PC

 ▪ Operation:
 ① After draining C_{PZ}, negative pre-charge
 ② v_B first directly charges C_{PZ} and L_X
 ③ L_X then drains into C_{PZ}

 ▪ L_X: steers energy it does not hold
 \therefore Lower $i_{L(PK)}$ & $t_X \rightarrow$ Lower loss
Energy Transfers

• Direct–Indirect
 ▪ Operation:
 o C_{PZ} and L_X charge v_B until C_{PZ} drains
 v_{PZ} falls sinusoidally around v_B
 i_L increases then falls sinusoidally
 o L_X then charges v_B linearly
 ▪ L_X: steers energy it does not hold
 ∴ Lower $i_{L(PK)}$ & transfer time
 ▪ C_{PZ} directly charges v_B
 ∴ Indirect–direct transfers
Energy Transfers

• Direct–Indirect with PC

 ▪ Operation:
 o C_{PZ} and L_X charge v_B until C_{PZ} drains
 o L_X charges v_B, but stops before it drains
 o Remaining energy in L_X charges C_{PZ}

 ▪ L_X: steers energy it does not hold
 ∴ Lower $i_{L(PK)}$ & t_X

\[V_{PZ} = 15 \text{ nF} \]
\[V_{PC} = 1.0 \text{ V} \]
\[f_{VIB} = 100 \text{ Hz} \]
Output Power Comparison

- Prototype
 - Taped out using TSMC 180nm CMOS

<table>
<thead>
<tr>
<th>Switch</th>
<th>Type</th>
<th>L [nm]</th>
<th>W [mm]</th>
<th>RMIN [Ω]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{GI+/–}</td>
<td>N</td>
<td>350</td>
<td>3.8</td>
<td>1.2</td>
</tr>
<tr>
<td>S_{I+/–}</td>
<td>N</td>
<td>350</td>
<td>3.2</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>300</td>
<td>7.2</td>
<td>0.93</td>
</tr>
<tr>
<td>S_{G+/–}</td>
<td>N</td>
<td>350</td>
<td>2.2</td>
<td>0.82</td>
</tr>
<tr>
<td>S_{O+/–}</td>
<td>P</td>
<td>300</td>
<td>4.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Output Power Comparison

• In all modes, P_O is not sensitive to v_B
 ▪ No additional stage required

• Pre-charging increases drawn power

• $P_O(SYM) > P_O(ASYM)$
 ▪ Lower ohmic loss because of lower peak current
 ▪ Lower breakdown limit

• $P_O(DIR) > P_O(IND)$
 ▪ Lower ohmic loss because of lower peak current

• Symmetrical Direct Pre-Charge is the best
Output Power Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Asym. PC Ind.</td>
<td>Sym. PC Dir.</td>
<td>Sym. PC Ind.</td>
<td>Asym. PC Ind.</td>
</tr>
<tr>
<td>C_{PZ}</td>
<td>15 nF</td>
<td>17 nF</td>
<td>20 nF</td>
<td>15 nF</td>
</tr>
<tr>
<td>f_{VIB}</td>
<td>143 Hz</td>
<td>120 Hz</td>
<td>140 Hz</td>
<td>100 Hz</td>
</tr>
<tr>
<td>$i_{PZ(PK)}$</td>
<td>8.2–36 µA</td>
<td>3.0–33 µA</td>
<td>11 µA</td>
<td>2.3–14 µA</td>
</tr>
<tr>
<td>$\Delta v_{PZ(OC)}$</td>
<td>1.2–5.2 V</td>
<td>0.5–5.5 V</td>
<td>1.2</td>
<td>0.5–3.0 V</td>
</tr>
<tr>
<td>V_{BD}</td>
<td>15 V</td>
<td>5.5 V</td>
<td>> 7.0 V</td>
<td>3.0 V</td>
</tr>
<tr>
<td>L_X</td>
<td>330 µH</td>
<td>330 µH</td>
<td>340 µH</td>
<td>100 µH</td>
</tr>
<tr>
<td>P_O</td>
<td>2.1–53 µW</td>
<td>0.7–49 µW</td>
<td>15 µW</td>
<td>0 – 7.9 µW</td>
</tr>
<tr>
<td>η_O</td>
<td>2.6×–3.5×</td>
<td>3.2×–6.8×</td>
<td>14×</td>
<td>2.8×–6.6×</td>
</tr>
</tbody>
</table>
Conclusions

• Symmetrical pre-charge can output the most power
 ▪ Symmetrical pre-charge has lower peak inductor current ∴ Lower loss
 ▪ Asymmetrical reaches breakdown limit sooner ∴ Lower drawn power
 ▪ Indirect transfer uses the inductor to transfer all energy ∴ High i_L, high loss
 ▪ Direct transfers allows inductor to transfer more energy than it carries ∴ Lower i_L, lower ohmic loss

• Symmetrical pre-charge losses 20% less power.

• With more output power, charger avails microsystems more functions and longer life.
Thanks a lot for your time and attention!

Any questions and/or comments?