HIGH EFFICIENCY DESIGNS FOR ENERGY CONVERSION, ENERGY STORAGE AND POWER MANAGEMENT

Applied Power Electronics Conference and Exposition 2013

Henrik Zessin, Fraunhofer IIS
Long Beach, March 19, 2013
HIGH EFFICIENCY DESIGNS FOR ENERGY CONVERSION, ENERGY STORAGE AND POWER MANAGEMENT

1. Introduction
2. Circuit design
3. Software and regulation loop
4. Summary
High efficiency designs for energy conversion, energy storage and power management

Introduction

Energy Harvester
- Photovoltaic
- Electro-Mechanical
- Thermo-Electric
- Radio Frequency

Energy Management
- Energy Conversion
- Manage Energy Storage
- Powers Application

Energy Storage
- Thin Film Battery
- Capacitor
- Traditional Battery
- Etc.

Application
- Wireless Sensor
- Powered Card
- Implantable Medical
- Many, many more…

Ambient Energy Harvester

Power Management
High efficiency designs for energy conversion, energy storage and power management

Introduction

![Energy Harvesting Sweet Spot Diagram](image)

- **Peak Power**
 - 100W: Power Tools
 - 10W: Laptop Computer
 - 1W: GPS
 - 10mW: Bluetooth Transceiver
 - 1mW: Hearing Aid/Wireless Sensor
 - 100µW: Sensor/Remotes
 - 10µW: RFID Tag
 - 1µW: Watch/Calculator
 - 10nW: µP Standby

Texas Instruments MSP430 RF2500

Wireless Sensor Demo (~60mW Peak)
High efficiency designs for energy conversion, energy storage and power management

Introduction

- **High efficiency designs**
 - Minimize **losses** (on-resistance, coil resistance, ESR, leakage, ...)
 - Minimize **standby power**
 - Maximize **harvested power**
High efficiency designs for energy conversion, energy storage and power management

Introduction

- What is the Maximum Mower Point?
High efficiency designs for energy conversion, energy storage and power management

Introduction

- What is Maximum Power Point Tracking?
High efficiency designs for energy conversion, energy storage and power management

Introduction

- MPPT algorithms
 - Incremental conductance ($\Delta P/\Delta V$)
 - P&O
 - Fractional OCV

- Fractional OCV
 - MPP voltage has a **fixed ratio** to open circuit voltage (0.7 – 0.8)
 - But: Ratio **not constant** and **different** for every generator

- P&O
 - **Generic** algorithm
 - **Oscillates** around MPP

Hill climbing algorithms
High efficiency designs for energy conversion, energy storage and power management

Circuit design

- MPPT works for all converter types
- This case study: Boost converter for low voltage sources
- Input
 - Thermogenerator
 - Solar cell
 - Fuel cell
High efficiency designs for energy conversion, energy storage and power management

Circuit design

- **Coupled inductor** DC/DC converter
- **20mV** startup voltage
- **Minimal** thermal gradient or illumination
High efficiency designs for energy conversion, energy storage and power management

Circuit design

- **DC/DC converter** controlled by microcontroller
- Start up circuit starts at 70mV
- Digitally controlled maximum power point tracker
- Integrate your own application
- Algorithm is **portable**
- Regulation of **input** or **output** power
High efficiency designs for energy conversion, energy storage and power management

Circuit design

- **Startup** circuitry

- **Synchronous** rectification

- **µC shuts down** self-oscillating circuit when in regulation
High efficiency designs for energy conversion, energy storage and power management

Circuit design

Oscillator startup

Startup of µC and MPPT
High efficiency designs for energy conversion, energy storage and power management

Software and regulation loop

- **MPPT**
 - Simple and *sufficiently precise* tracking
 - Relatively *slow*
 - Requires *more energy* than FOCV

- **FOCV**
 - *Simplifies* measurement
 - *Energy loss* due to sampling of open circuit voltage
 - Choosing the *sampling period*
 - Voltage constant *varies* around 0.7 and 0.8

- µC enables *dynamically* choosing best algorithm
High efficiency designs for energy conversion, energy storage and power management

Software and regulation loop

- **Clock source** dependent on **duty cycle**
- Use **hardware** modules
- **PWM** vs. **PFM**
- Complete **shutdown**
High efficiency designs for energy conversion, energy storage and power management

Energy storage

- Higher Drive Current
- Higher Energy Density
- Lowest Leakage
- 50X SuperCap
- 4,000X < SuperCap
- Rechargeable / Long Life
- Superior Lifetime Energy – never replace a battery

SSB = Best of Both

Super Cap

Thin Film Battery - TFB

Battery

Higher Drive Current, Higher Leakage

Higher Energy Density & Lower Leakage
High efficiency designs for energy conversion, energy storage and power management

Summary

- Most power available if load matches source
- **Power management** ensures maximum power output
- **Energy storage** always required
- Transducers can be shrunken due to more efficient power management
- System costs **significantly lower** when transducers are smaller
Thank you for listening!

Any questions.....?

- Contact: Henrik Zessin
 Fraunhofer-Institute for Integrated Circuits
 Nordostpark 93
 90411 Nuremberg
 Tel. 0911 / 58061 6425
 henrik.zessin@iis.fraunhofer.de

- www.iis.fraunhofer.de/ec/power
- www.smart-power.fraunhofer.de