The Objectives of Energy Management in Microgrids

Eric Gallant GS Battery (U.S.A.) Inc. Director Business Development

About the Presenter

Eric Gallant

Director of Business Development

GS Battery USA

eric.gallant@gsbattery.com

Eric Gallant has been involved in the power and energy sectors for more than 25 years. His experience ranges from nuclear reactor testing and operation for the Department of Energy (DoE) and the United States Navy (USN) through mission critical facility design and operation. He recently joined GS Battery to develop new opportunities in the areas of microgrids, renewable energy and battery based energy storage systems.

Agenda

- What is a Microgrid?
- What are the objectives of energy management in a microgrid?
- Case Studies
 - Shetland Islands
 - Haiti
 - Ecuador
- Summary and Questions

What is a microgrid?

• Definition:

"A group of interconnected loads and distributed energy resources (DERs) with clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode."

What is a microgrid?

- Components and Features
 - group of interconnected loads
 - distributed energy resources (DERs)
 - clearly defined electrical boundaries
 - acts as a single controllable entity with respect to the grid.
 - can connect and disconnect from the grid
 - operates in both grid-connected or island-mode."

What are the Objectives?

- Energy Security/Energy Independence
 - Ability to operate islanded from grid
 - Improved ability to integrate renewable energy sources
- Increased Energy Reliability and Resiliency
- Increased Demand Side Energy Management Opportunities
 - Peak Demand Reduction
 - Time of Use Shifting
- Improved grid resilience

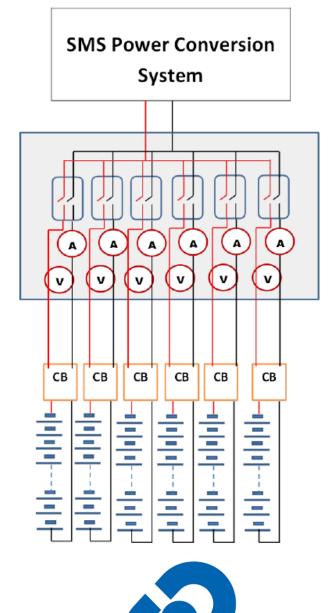
- Energy Resources
 - Fossil Fuels (North Sea, Shetland Basin)
 - 1968-2008
 - 8 Billion barrels of oil
 - Landed at Sullom Voe

- Energy Resources
 - Renewable Energy (Wind)
 - 2000-Present
 - Burradale Wind Farm
 - 3.68MW
 - World Record Capacity Factor (57.9 in 2005)
 - Viking Wind Farm (PLANNED)
 - 370MW

- Energy Resources
 - Renewable Energy (Tidal)
 - 2014-Present
 - Nova Innovation 30
 - 30kW
 - World's First Community Tidal
 - Shetland Tidal Array (CONSTRUCTION)
 - 100kW

- 1MW Battery Project, Shetland
 - Primary Objective
 - Add Energy Storage to Reduce Peak Demand at Lerwick Power Station
 - Secondary Objectives
 - Renewable generation constraint avoidance
 - Reduction of power station fossil fuel consumption
 - Stability control
 - Provision of ancillary services

- Project Technical Approach
 - Battery Plant


Battery System Configuration		
Batteries per Rack	24	
Racks per String	11	
Cells per String	264	
Nominal Voltage	528VDC	
Parallel Strings	12	
Total cell count	3168	
System Power	1MW _{AC}	
System Energy	3MWh	

- Project Technical Approach
 - Power Conversion

	Power Infrastructure Data
Transformer Room	11kV grid connection
Power Conversion Room	2x 500kW AC-DC converters
Battery Room	1MW/3MWh VRLA storage
Store Room	Fire suppression and spares

- Project Technical Approach
 - Monitoring and Control Systems

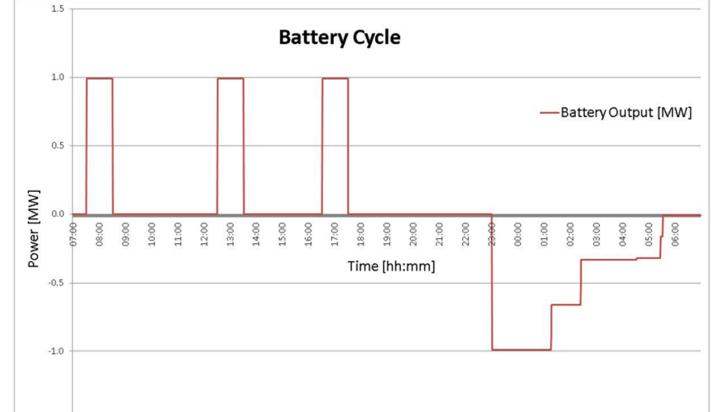
Control Systems

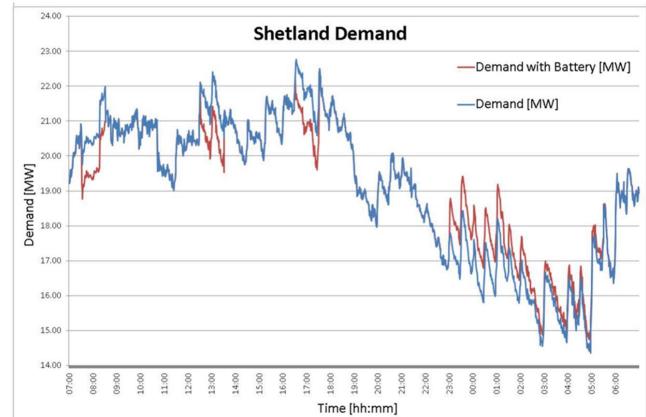
SCADA

Active Network Management Platform

Battery and Power Conversion System Controller

Local Interface Controller


Battery Management Monitoring and Management System



- Battery Charging/Discharging
 - 3 discharge cycles/day
 - Corresponding to shifts
 - Charging off peak via renewables

- Peak Demand Reduction
 - Elimination of generator starts
 - Reduction in diesel fuel consumption
 - Elimination of maintenance costs
 - Increased utilization on renewables

Outcomes

- Project reduced peak demands
- Project reduced OpEx and delayed CapEx
- Reduction in fossil fuel emissions
- Project facilitated the integration of increased renewables
- Reduction in diesel fuel consumption
- Elimination of maintenance costs
- Increased utilization of renewables

• Energy Resources

- Unreliable Grid
- Small Scale Hydro (Rainy Season Only)
- Diesel Generators
- Renewable (PV)

- 192 kWh Battery Project Haiti
 - Primary Objective
 - Improve site power quality and resiliency
 - Secondary Objectives
 - Renewable integration
 - Reduction of fossil fuel consumption
 - Extend hours of operation
 - Reduce OpEx related to energy

- Project Technical Approach
 - Battery Plant

APEC

Battery System Configuration		
Batteries per Rack	24	
Racks per String	1	
Cells per String	24	
Nominal Voltage	48VDC	
Parallel Strings	4	
Total cell count	96	
System Power	500kW	
System Energy	192kWh	

- Outcomes
 - Improved Power Quality
 - Improved Quality of Patient Care and Medical Capability
 - Project reduced OpEx and delayed CapEx
 - Reduction in fossil fuel emissions
 - Project facilitated the integration of increased renewables
 - Reduction in diesel fuel consumption
 - Elimination of maintenance costs
 - Increased utilization of renewables

- Energy Resources
 - Diesel Generators
 - Renewable (PV)

- 48 kWh Project Ecuador
 - Primary Objective
 - Reduction of fossil fuel consumption
 - Secondary Objectives
 - Renewable integration
 - Improve site power quality and resiliency

- Project Technical Approach
 - Battery Plant

Outcomes

- Improved Power Quality
- Project reduced OpEx and delayed CapEx
- Reduction in fossil fuel emissions
- Project facilitated the integration of increased renewables
- Reduction in diesel fuel consumption
- Elimination of maintenance costs
- Increased utilization of renewables

- Microgrid Objectives
 - Each project achieve multiple objectives. Create a "value stack"
 - Any Scale

Questions

