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APEC® Historical Perspective

Competing technologies for electrification in 1880s:
 Edison:

dc.

Relatively small power plants (e.g. Pearl Street Station).
No voltage transformation.

 Short distribution loops — No transmission
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figure 1. Map of lower Manhattan showing the original

area served by the Pearl Street station and its distribution
system (courtesy of the Consolidated Edison Company of
New York).

e
figure 3. Edison’s 100-kW engine-driven “Jumbo” dynamo of the type installed
at the Pearl Street station (photo courtesy of the Edison National Historical Site,
U.S. Department of the Interior, National Park Service).

“Eyewitness to dc history” Lobenstein, R.-W. Sulzberger, C.
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APEC® History

Competing technologies for electrification in 1880s:

*Tesla:
e ac
 Large power plants (e.g. Niagara Falls)
* Voltage transformation.

» Transmission of electricity over long distances

http://spiff.rit.edu/classes/phys213/lectures/niagara/niagara.html
© A. Kwasinski, 2014

 Loads were incandescent lamps and induction motors.
T D Y - ; \ i -

Niagara Falls historic power plant:
38 x 65,000 kVA, 23 kV, 3-phase
generatods



APEC® History

Edison’s distribution system characteristics: 1880 — 2000 perspective
* Power can only be supplied to nearby loads (< 1mile).

« Many small power stations needed (distributed concept).

» Suitable for incandescent lamps and traction motors only.

« Cannot be transformed into other voltages (lack of flexibility).
 Higher cost than centralized ac system.

« Used inefficient and complicated coal — steam actuated generators (as
oppose to hydroelectric power used by ac centralized systems).

* Not suitable for induction motors.

© A. Kwasinski, 2014



History
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Traditional technology: the
electric grid:

« Generation, transmission, and
distribution.

 Centralized and passive
architecture.

« Extensive and very complex
system.

« Complicated control.

* Not reliable enough for some
applications.

« Stability issues.
 Vulnerable/fragile.

* Need to balance generation and
demand

* Lack of flexibility.



AP

==c® History

Conventional grids operation:

* In order to keep frequency within a tight stable operating range generated
power needs to be balanced at all time with consumed power.

* A century working around the need for adding electric energy storage
through grid stiffness by:
* Interconnecting many large power generation units (high inertia =
mechanical energy storage).
* Individual loads power ratings are much smaller than system’s capacity

« Conventional grid “stiffness” make them lack flexibility.

« Lack of flexibility is observed by difficulties in dealing with high penetration of
renewable energy sources (with a variable power output).

* Electric energy storage can be added to conventional grids but in order to
make their effect noticeable at a system level, the necessary energy storage

level needs to be too high to make it economically feasible.
© A. Kwasinski, 2014



APEEC. History

Edison’s distribution system characteristics: 2000 — future perspective
* Power supplied to nearby loads is more efficient, reliable and secure than long
power paths involving transmission lines and substations.

« Many small power stations needed (distributed concept).

« Existing grid presents issues with dc loads (e.g., computers) or to operate
induction motors at different speeds. Edison’s system suitable for these loads.

» Power electronics allows for voltages to be transformed (flexibility).
« Cost competitive with centralized ac system.

« Can use renewable and alternative power sources.

 Can integrate energy storage.

« Can combine heat and power generation.
© A. Kwasinski, 2014



AP

C. Sustainability
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Sustainability
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AP===C. Sustainability

Issues with integration of “new” renewable sources into large
conventional power grids

« Variable output (part stochastic) may lead to potential stability and power
guality issues.

» Large footprint.
* No (or very little) “inertia”
Other issues with renewable sources in general (inc. hydroelectric plants)

* Not usually sufficiently available near load centers (so cost evaluation need to
add construction of transmission lines)

 Ecological issues.

© A. Kwasinski, 2014



Reliability/Resilience
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Conventional U.S. grid
availability in normal
conditions:
Approximately 99.9 %

Availability required in critical
applications:
Approximately 99.999%



Reliability/Resilience

* Due to their predominately centralized control and power
generation architectures, power grids are very fragile systems in
which little damage may lead to extensive outages.
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Reliability/Resilience

« Other weaknesses of power grids observed during natural
disasters

 Very extensive network (long paths and many components).

* Typically, sub-transmission and distribution portions of the grid lack
redundancy. As a result, long restoration times usually originate at the
distribution level of power grids.

* Need for continuous balance of generation and demand.

« Difficulties in integrating meaningful levels of electric energy storage

» Aging infrastructure

» Aging workforce (people is an essential part of infrastructure systems)

© A. Kwasinski, 2014
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Reliability/Resilience

« Example of lack of redundancy at sub-transmission/distribution

» Vulnerability: Sub-transmission and distribution portions of the grid lack
redundancy. Most outages originate in distribution-level issues.

* E.g., Only one damaged pole among many undamaged causing most of
Grand Isle to lose power.
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Grand Isle, about 1 week after the hurricane
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Reliability/Resilience

Example of lack of diversity

APZ=C.

© A. Kwasinski, 2014



Reliability/Resilience

Example of lack of diversity

APZ=C.

© A. Kwasinski, 2014



Reliability/Resilience

« Power grids performance during natural disasters

» Case study: Superstorm Sandy
« Often, damage to power grids is less severe than for residences.

» Storm surge damaged some substations in coastal areas
- \ i

© A. Kwasinski, 2014
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APEC® Other issues In conventional grids

- Centralized integration of renewable energy issue: generation
profile unbalances.

« Complicated stability control

* The grid lacks operational flexibility because it is a passive
network.

*The grid is old: it has the same 1880s structure. Power plants
average age is > 30 years.

© A. Kwasinski, 2014
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C.

Microgrids: Concept (a first approach)

* Microgrids are independently controlled (small)

electric networks, powered by local units

(distributed generation).

WIND
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Microqrid: Concept (hewest DOE def.)

« What is a microgrid?

» Microgrids are considered to be locally confined and independently
controlled electric power grids in which a distribution architecture integrates
loads and distributed energy resources—i.e. local distributed generators
and energy storage devices—which allows the microgrid to operate
connected or isolated to a main grid
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Distributed Generation: Concept

« Key concept for microgrids: independent control.

 This key concept implies that the microgrid has its own power generation
sources (active control vs. passive grid).

* A microgrid may or may not be connected to the main grid.

* DG can be defined as “a subset of distributed resources (DR)” r. Ackermam, G.

Andersson, and L. Soder, “Distributed generation: A definition.” Electric Power Systems Research, vol. 57, issue 3, pp. 195-204, April 2001].

* DR are “sources of electric power that are not directly connected to a bulk
power transmission system. DR includes both generators and energy storage

teCh n0|og ieS” [T. Ackermann, G. Andersson, and L. Soder, “Distributed generation: A definition.” Electric Power Systems Research,
vol. 57, issue 3, pp. 195-204, April 2001]

* DG “involves the technology of using small-scale power generation
technologies located in close proximity to the load being served” (i mall, “The new

distributed generation,” Telephony Online, Oct. 1, 2001 http://telephonyonline.com/mag/telecom new distributed generation/.]

* Thus, microgrids are electric networks utilizing DR to achieve independent
control from a large widespread power grid.

© A. Kwasinski, 2014



Microqrids

* Distributed Generation: Advantages

With respect to the traditional grid, well designed microgrids can be:
« More resilient (with diverse power inputs and in most cases with energy
storage).

* More efficient

« More environmentally friendly

* More flexible

* Less vulnerable

* More modular

 Easier to control

* Immune to issues occurring elsewhere

 Microgrids can be integrated into existing systems without having to interrupt
the load.

 Microgrids allow for combined heat and power (CHP) generation.

© A. Kwasinski, 2014
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AP==C® Microgrids: System Components

Generation units = microsources ( approximately below than 100 kW each)
* PV Modules.

« Small wind generators

* Fuel Cells

» Microturbines

Energy Storage (power profile)
- Batteries

« Ultracapacitors

* Flywheels

Loads
 Electronic loads.
* Plug-in hybrids.
* The main grid.

Power electronics interfaces
» dc-dc converters
* inverters
* rectifiers
© A. Kwasinski, 2014



APEEC. Microgrid Examples

 Resilient power supply during disasters

» Power electronics-enabled microgrids may be the solution that achieves
resilient power during disasters (e.g. NTT’s microgrid in Sendai, Japan)
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AP

C. Microgrid Examples

* Isolated microgrids for villages in Alaska.
« Wind is used to supplement diesel generators (diesel is difficult and
expensive to transport in Alaska

» Toksook Bay
*Current Population: 590
# of Consumers: 175
sIncorporation Type: 2nd Class City
«Total Generating Capacity (kw): 2,018
1,618 kW diesel
* 400 kW wind
*(tieline to Tununak and
Nightmute)

Wi Information from “Alaska Village
- Electric Cooperative”

http://avec.securesites.net/images/communities/Toksook%20Wind%20Tower%20Bulk%20Fuel%20and%20Power%20Plant.JPG

© A. Kwasinski, 2014



APEEC. Microgrid Examples

» Other examples in Alaska

Selawik

Kasigluk

http://www.alaskapublic.org/2012/01/18/wind-power-in-alaska/

http://ww.akenergyauthority.org/programwindsystem.html

© A. Kwasinski, 2014



APEC. Microgrid Examples

 This is a proposed microgrid concept in order to use more renewable

sources in wireless communication networks by creating so-called

sustainable wireless areas.

« SWAs are dc (e.g. 380V ) microgrids created by interconnecting a

few (e.g. 7) base stations with, possibly, an advanced power

distribution architecture.

* Renewable energy sources are placed in base stations or nearby

locations where there is sufficient space.

« Resources (power generation and energy
storage) are shared among all base
stations within the SWA.

« Communications traffic and electric energy
management is integrated. l.e., traffic
IS regulated (or shaped) based on local
energy resources availability and forecast.

© A. Kwasinski, 2014



APZEC. Microgrid Examples

« Kitakyushu smart community (Japan)
* The area has a few 3 kW wind generators.

) T

© A. Kwasinski, 2014



=C. Microgrid Examples

« Kitakyushu smart community (Japan)
« Hydrogen produced in the industrial area is distributed with a 1.2 km
pipeline for

« 7 x 3 KW Toshiba residential fuel cells,

« 3 kW hydrogen station

« 100 kW fuel cell at a museum.

© A. Kwasinski, 2014



=C. Microgrid Examples

« Kitakyushu smart community (Japan)

* Residential fuel cells

i Ml o

Deodorant and Fuel Cell

flow meter
© A. Kwasinski, 2014
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APEEC. Microgrid Examples

« Kitakyushu smart community (Japan)
« EV fast charging (and discharging) station + 50 kWh Li-ion batteries.
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APEEC. Microgrid Examples

« Kitakyushu smart community (Japan)

300 kWh Lead-acid batteries

-ws

f’:.' B ¥ \
. . - Sy )

.

l
-
l

| 2 |
\

- it

© A. Kwasinski, 2014



Microgrids

 Application range:
* From a few kW to MW

RESIDENCE | ! DATA CENTER CAMPUS

LOW MEDIUM HIGH
POWER POWER POWER

» Other applications: hospitals, military facilities, buildings, industrial
complex.

© A. Kwasinski, 2014



APEC® Smart grids

Smart grids definition:
 Besides being the new buzz word is not a concept but rather many
technologies.

Smart grid focus:
- Reliability.
* Integration of environmentally friendly generation and loads.

Concept evolution:

« “Smart grid 1.0”: Smart meters, limited advanced communications, limited
Intelligent loads and operation (e.g. demand response).

« “Smart grid 2.0” or “Energy Internet”: Distributed generation and storage,
Intelligent loads, advanced controls and monitoring.

© A. Kwasinski, 2014



Smart Grids

* A customer-centric view of a power grid includes microgrids as one of
several smart grids technologies.
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