Technology Advancement in Small Wind Power

Dr. Imad Mahawili
Chief Technical Officer
WindTronics, LLC
Germany, April 2005
Germany, April 2005
US Wind Map and Classes
Class 4:
Rayleigh Distribution of 12.2 MPH (5.8 m/s)
Annual Average at a Height of 33 ft (10m)

Class 6:
Rayleigh Distribution of 14.9 MPH (6.7 m/s)
Annual Average at a Height of 33 ft (10m)
Typical Wind Farm Wind Chart

Wind Speed (mph) vs. Time
How does a wind turbine work?

1. Inflow of wind
2. Inflow of wind activates rotor (A) & blades (B)
3. Rotor & blades spin the main shaft (C) and gearbox (D), which spins the generator (G), resulting in electrical output

Dr. Imad Mahawili
The Future of Wind Technology

Traditional Wind Turbines

WindTrronics Wind Turbine

Dr. Imad Mahawili
The Future of Wind Technology: No Gears

Dr. Imad Mahawili
The Future of Wind Technology: Blade Tip Power System

Dr. Imad Mahawili
WindTronics WT6500 Power Curve

Power (W) vs. Wind Speed (mph)

- **Cut in Wind Speed**: 0 mph
- **Plate Power**:
- **Cut Off Wind Speed**: 40 mph

Dr. Imad Mahawili
Turbine Power vs. Wind Speed

Dr. Imad Mahawili
Turbine Power Curve Comparisons

Dr. Imad Mahawili
IEC 61400 One Day Result

IEC 61400 Data Summary

<table>
<thead>
<tr>
<th>Date</th>
<th>Period (hr)</th>
<th>Min (mph)</th>
<th>Max (mph)</th>
<th>Average (mph)</th>
<th>Max Power (W)</th>
<th>Ave. Power (W)</th>
<th>Total Energy (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/6/11</td>
<td>24</td>
<td>10</td>
<td>51</td>
<td>28</td>
<td>1,481</td>
<td>343</td>
<td>8</td>
</tr>
</tbody>
</table>

Dr. Imad Mahawili
Site Assessment
Computational Fluid Dynamics Modeling

Dr. Imad Mahawili
Site Assessment
Computational Fluid Dynamics Modeling
Site Assessment
Computational Fluid Dynamics Modeling

Class 4: 12.5 mph
P=140%

Dr. Imad Mahawili
Site Assessment
Computational Fluid Dynamics Modeling

Class 4: 12.5 mph
P=68%
Birds Resting on the WindTronics Turbine!

Dr. Imad Mahawill