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Robert Strittmatter is the vice-president of R&D 
Strategic Projects at Efficient Power Conversion. 
He received his PhD in Physics from the California 
Institute of Technology in 2003, specializing in GaN
epitaxy, processing and micro-electromechanical 
devices. Since joining EPC in 2010, Robert has 
been heavily involved in the reliability 
characterization and qualification of GaN FET’s 
and IC’s. This includes: (i) understanding the 
fundamental physics of failure in GaN HEMTs; (ii) 
device simulation and optimization for enhanced 
reliability; and (iii) developing novel test 
methodologies and standards for GaN devices. 
Prior to EPC, he worked for 10 years in opto-
electronics for the Aerospace industry, focusing on 
advanced semiconductor imaging technologies.
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Stressor
Device/
Package

Test Method Instrinsic Failure Mechanism EPC Test Results

Dielectric failure (TDDB)
Threshold Shift
Threshold Shift

RDS(on) Shift
ESD Dielectric rupture [2,3,6,7,8,9,10] 2,3,6,7,8,9,10

Electromigration In Progress
Thermomigration In Progress

SOA Thermal Runaway This Report
Short Circuit Thermal Runaway This Report

Voltage 
Rising/Falling

Device Hard-switching reliability RDS(on) Shift This Report

Current 
Rising/Falling

Device
Pulsed Current 

(Lidar reliability)
None found This Report

Temperature Package HTS None found [6,7,8,9] 6,7,8,9
MSL1 None found [3,4,5,6,7,8,9,10] 3,4,5,6,7,8,9,10

H3TRB None found [1,2,3,4,5,6,7,8,9,10] 1,2,3,4,5,6,7,8,9,10
AC None found [4,5,6,7,8,9] 4,5,6,7,8,9

Solderability Solder corrosion This Report

uHAST Dentrite Formation/Corrosion [10]
10

TC Solder Fatigue This Report 1,2,3,4,5,6,7,8,9,10
IOL Solder Fatigue This Report 7,8,9,10

Bending force test Delamination This Report
Bending Force Test Solder Strength This Report
Bending Force Test Piezoelectric Effects This Report

Die shear Solder Strength This Report
Package force Film Cracking This Report

Voltage Device

This Report

This Report

HTGB

HTRB

Current Device DC Current (EM)

Mechanical/ 
Thermo-

mechanical 
Package

Current + Voltage 
(Power)

Device

Humidity Package
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Switching Stress: 
High Voltage/High Current 

and Dynamic RDS(on)
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Phenomenology of Dynamic RDS(on) Degradation

• Hot electron scattering and trapping is the primary 
cause of RDS(on) degradation in eGaN FETs
• Simultaneous high voltage/high current

• Stress Factors
• Drain Voltage: Strong influence
• Temperature: Medium influence

• Negative activation energy (i.e. 
degradation is less at higher temperature)

• Switching frequency: Mild influence
• Switch current: Mild influence
• Inductive vs Resistive Hard-Switching: Mild 

influence
• Soft vs Hard Switching: Strong influence

• No degradation for soft switching (ZVS)
• Charge trapping is self-quenching, rising linearly 

with log(time)
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NIR Light Emission from Hot Electrons in an eGaN FET

0.7 um < λ < 1.1 um
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Hot Carrier Trapping Mechanism6
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Mathematical Model

7

Basic Differential Equation for Trap Charge Injection Rate

𝑄! 𝑡 =
𝑞𝐹λ
𝛽 log 1 +

𝐵𝛽
𝑞𝐹λ 𝑡

./!
.0 = 𝐴 exp −1"#23/!

456 ≡ 𝐵 exp − 3/!
456 = )𝐵𝐼 exp − 3/!

456

If I and F (voltage) are 
not changing in time (or 
are in steady state)

If I and F (voltage) 
are changing in time

𝑄! 𝑡 = 7𝐵8
"

#

𝐼 𝑡 exp −
𝛽𝑄!
𝑞𝐹 𝑡 λ 𝑑𝑡

𝐹 𝑡 = log 1 + exp
𝑉!" 𝑡 − 𝑉#!

𝛼

𝜆 = 𝑇exp
ℏ𝜔$%
𝑘𝑇

Electron Mean Free Path:

Channel Electric Field vs Drain Bias:
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Time Dependent Conditions:Steady State Conditions:
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Hard-Switching: Effect of VIN and Temperature8
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Model vs Measurement9

Measurement Model
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Effect of Switch Current on Dynamic RDS(on)
10

Switching current has a small impact in RDS(on) degradation
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Dynamic RDS(on) vs Switching Frequency

Switching frequency has a small impact in RDS(on) degradation
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Inductive vs Resistive Hard Switching

• Same part tested under 
inductive and then 
resistive hard-switching
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Modeling at Extremes

150V

120V

100V

80V 60V

150V, 125 °C

150V, 75 °C

As the number of trapped electrons QS approaches the number of electrons in the 
2DEG, the RDS(on) growth characteristic deviates from a straight line along the log(t) 
axis
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Dynamic RDS(on) Models for eGaN Products

∆𝑅
𝑅
= 𝑎!

𝑎"Ψ log 1 + 𝑎#𝑡/Ψ
1 − 𝑎"Ψ log 1 + 𝑎#𝑡/Ψ

Ψ = log 1 + exp
𝑉DE − 𝑉5D

𝛼
𝑇exp

ℏ𝜔FG
𝑘𝑇

a1 = 0.6 (unitless)
a2 = 9.33E-5 (K-1/2)
a3 = 1000 (K1/2 min-1 )
ℏ𝜔$%= 92 meV
VFD = 210 V (Gen5 200V)
α = 25 (V) (Gen5 200V)
T = Device temperature (K)
t = Time (min)

Normalized RDS(on) vs Time

where

• Specific to each 
device families of 
eGaN FETs

• Available upon 
request 
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Stress: 
High Current and Electromigration
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16 Modeling Time to Failure from Electromigration

𝑀𝑇𝑇𝐹 =
𝐴
𝐽H
𝑒
/
IJ

MTTF: Mean Time To Failure
A: Constant
J: Current density
n: Model parameter
Q: Activation Energy
k: Boltzmann’s constant 
T: Absolute Temperature

• Continuous current density in eGaN FETs is based on electromigration limits for solder joints 
and thermal limits, whichever is lower
• Continuous current rating of eGaN FETs is based on a (conservative) maximum current 

density of 5 kA/cm2 through the solder bumps
• Electromigration in solder material is not unique or special for GaN-based transistors. The 

same mechanism occurs in Si-based power MOSFETs, and manufacturers of those products 
must take it into account

• The mechanism of electromigration in solder materials is similar that in other metals (Cu, Al). 
Mean time to failure is modeled using Black’s equation (see below), and is driven by 2 
stressors: current density and temperature
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17 Test Methodology
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18 Test Matrix

5 A 10 A 15A

100 ⁰C
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• 10A through a single solder ball is a current density of ~24kA/cm2

• An industry accepted limit for solder joints is 10kA/cm2

• EPC’s employs a conservative design criterion of 5kA/cm2

Current thru Solder Ball



Power Conversion Technology Leader             epc-co.com

Solder Ball Resistance vs Time at 10A 150° C19

Test Conditions: 10A 
at 150⁰C

D
IE

1:
 5

.6
 h

D
IE

7:
 7

.5
 h

D
IE

8:
 7

.6
 h

D
IE

3:
 1

3 
h

D
IE

4:
 7

7 
h

D
IE

6:
 9

8 
h

Ball Resistance vs Time (8 parts)



Power Conversion Technology Leader             epc-co.com

SEM Cross-Section of a Failed Solder Ball

Open 

failure 
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SEM Cross-Section of a Surviving Solder Ball

survivor Formation of 
voids 
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22 Weibull Analysis and Fit to Black’s Equation
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Example 1: 125C, 1A (2.5 kA/cm2)
MTTF = 9 yrs

Example 2: 90C, 2.08A (5kA/cm2)
MTTF = 61 years

Weibull Plots (3 Test Conditions)

Time to Failure (hrs)
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𝑀𝑇𝑇𝐹 =
𝐴
𝐽H
𝑒
/
IJ

A = 9.65e-04 hrs (A/cm2)2.39

n = 2.39
Q = 1.2 eV
k = 8.617e-5 eV/K

eGaN Parameters for Black’s Model
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Estimated MTTF of eGaN FETs from Electromigration

MTTF (in years) for 100% duty cycle 
(continuous operation 24h/day, 365 days/year)

MTTF (in years) for 33% duty cycle 
(continuous operation 8h/day, 365 days/year)
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Conclusions
• Physics based models were used to predict long-term reliability 

performance of eGaN devices
• Under drain voltage stress (dc or switching), a first principles 

model of hot carrier scattering was developed to predict the 
evolution of on-resistance in GaN devices

• Under high current stress, Black’s equation was used to model 
solder joint failure from electromigration

• Both models can be used to predict behavior well outside of data 
sheet limits

• Both models predict excellent reliability when devices are operated 
within the conservative datasheet limits for VDS;max and ID;max
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