Emerging Zero-Standby Solutions for Miscellaneous Electric Loads

Daniel Gerber

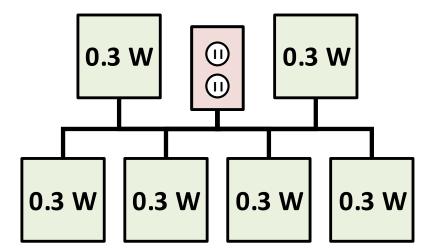
Lawrence Berkeley National Laboratory

Presented at APEC 2022 3/24/2022

Bachelor: MIT – Electrical Engineering PhD: University of California Berkeley – Power Electronics Postdoc, Scientist: Lawrence Berkeley National Laboratory

My current field of research is in standby power reduction, DC microgrids, and end-use load electrification.

My interest is in rapid prototyping and applications-based research. These topics span power electronics, microgrids, power systems, controls, buildings, and energy.

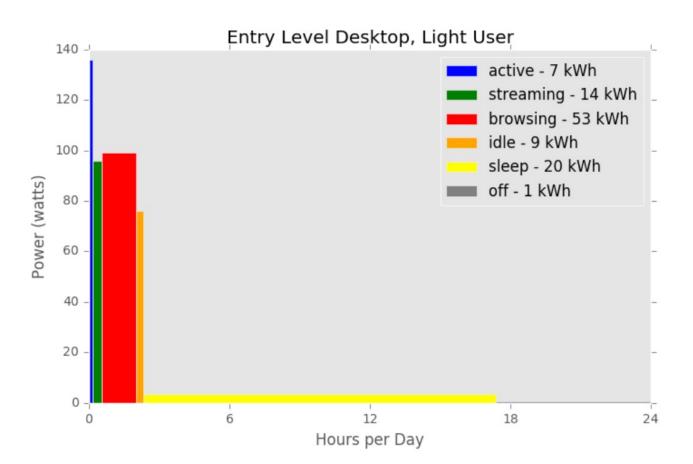

0.3 W 0.3 W

<u>Past</u>

Devices in standby would regularly consume over 2 W.

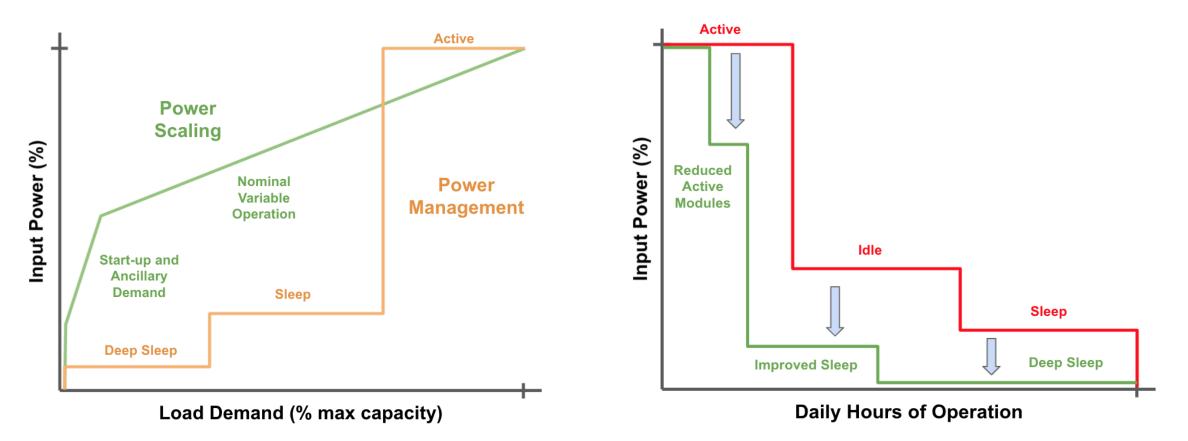
Present

Considerable progress in reducing standby has been achieved through a variety of policies and technologies.

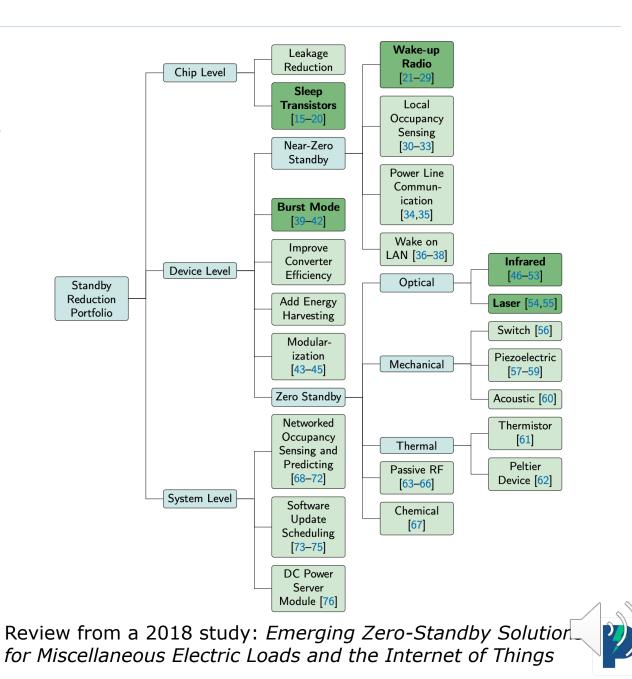


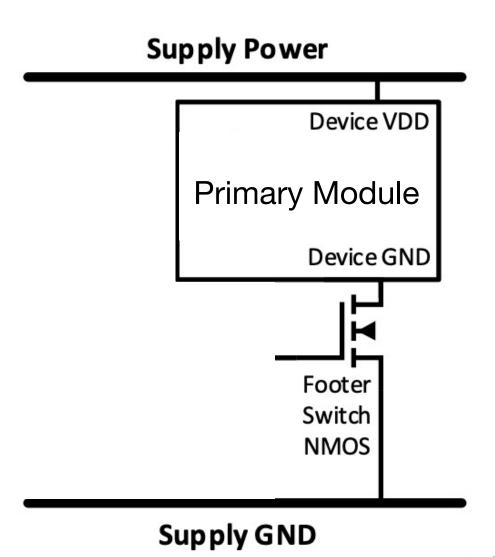
Future

Trends in electronics and the IOT suggest a proliferation of lowpower devices with standby modes.

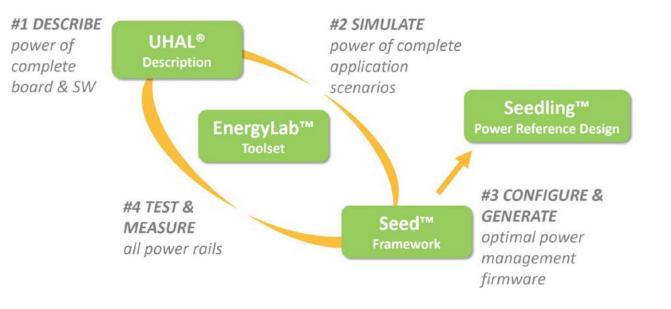


- Standby consumption has had many definitions
- Our research concerns any consumption that occurs when a load's primary function is not in an active mode. Includes:
 - Idle On, but not useful output
 - Sleep Consumption in an intentional low-power mode (or "ready" mode for appliances)
 - Off Consumption that occurs while device is officially off

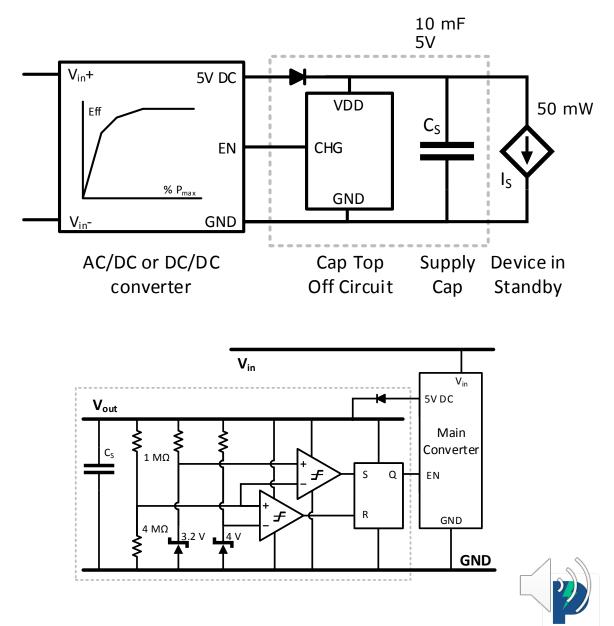

Reducing Standby Consumption


- A device's consumption, arranged as a histogram, can include power management and power scaling
- How to improve part-load consumption?
- Shrink the staircase
 - Improve efficiency in various modes
 - Eliminate low-power modes: Zero Standby technology

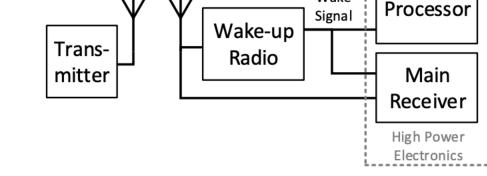
- Many standby reduction techniques, applicable to specific classes of devices
- This presentation describes some examples from each category
- Chip-Level Improvements
 - Leakage
 - Improved Power Management
- Device-Level Improvements
 - Burst Mode
 - Wake-up Radio
- System-Level Improvements
 - Centralized Wake-up Controller
 - Automatic Update Scheduling


- Leakage Quiescent current through Rds when off, or CMOS held in state
 - Can occur in primary modules that have been "turned off"; adds up over many CMOS gates
 - Can reduce leakage with footer switches to help turn off main modules
- Switching Loss Loss during switching due to capacitive and switch overlapping effects
 - Can occur in wake-up logic that must be powered to wake primary modules
 - Can reduce by designing wake-up circuit to reduce loss: low clock frequency, low supply voltage, low gate capacitance, low output resistance

- SoC/FPGA power management can often be optimized
- Optimization services can leverage special tools to improve power consumption in standard on-chip processes
- Tool Process Flow
 - Simulate power what-if scenarios
 - Evaluate and select various optimization options
 - Conduct power measurements on the prototyping or custom production board

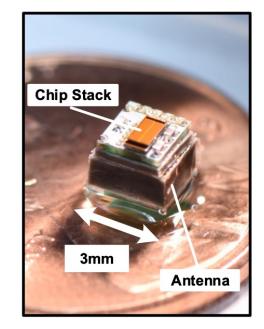

Reference design examples from Aggios' tool EnergyLab. Currently only for Xilinx, but general principles applicable to other chips.

Source: AGGIOS Seedlings Power Reference Designs: Xilinx Zynq UltraScale+ MPSoC



Application	Description	SoC Version	Board	Mode	Xilinx TRD or equivalent	AGGIOS PRD	Difference	Saved
Video	1080p60 streaming	ZU7EV	ZCU106	Active PS and PL	4,559 mW	2,950 mW	- 1,609 mW	35%
Video	Deep Learning - Region of Interest	ZU7EV	ZCU106	Active PS and PL	10,959 mW	4,201 mW	- 6,758 mW	62%
ECC	ECC processing	ZU9EG	ZCU102	Active PS and PL	3,702 mW	1,573 mW	- 2,129 mW	58%
Benchmark	Memory throughput	ZU9EG	ZCU102	Active PS only	1,714 mW	1,031 mW	- 683 mW	40%
SDR	Radio	ZU9EG	1701102	Signal Detection APU/Linux only	1,680 mW	535 mW	- 1,145 m'N	68%
SDR	Radio	ZU9EG	ZCU102	Signal Detection RPU/RTOS only	350 mW	50 mW	- 300	86%

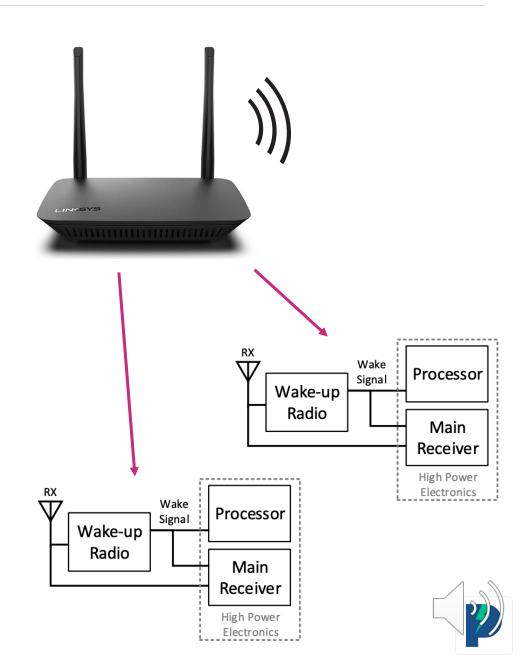
- Converters perform poorly at low load
- Burst Mode is a converter technique that powers light loads by periodically turning on for a short duration
 - Currently only used at extremely light load with a small supply capacitor
 - Does not allow supply cap voltage to sag; requires converter always on
- Extended applications?
 - Many electronics are tolerant to a range of input voltage
 - Allowing supply cap voltage to sag a bit reduces frequency of bursting; allows converter to turn off completely for a few seconds
 - Eliminates no-load consumption of converter while off
 - Can use a super cap to extend off time

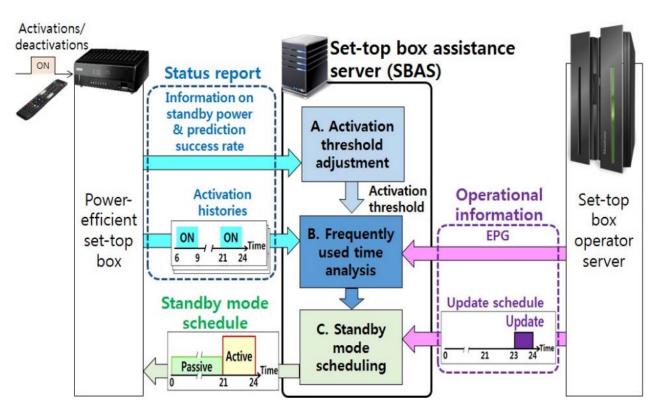


- An extremely low-power radio designed solely to wake a main device or module from sleep
- Most appealing type of standby killer
 - RF wake-up signal is fairly universal
 - Most future IoT and smart devices will have an antenna
- Still not available as COTS chips, but promising results in academia. Examples:
 - 578 µW, -91.5 dBm (WiFi) ¹
 - 2.1 mW, -109 dbm (cellular) ²
- Can optionally use energy harvesting to power WuR in battery applications

ТΧ

RX


Wake


[1] A Fully Integrated 0.2V 802.11ba Wake-Up Receiver with -91.5dBm [2] A 2.1mW -109dBm NB-IoT Wake-Up Receiver

- Integrate home energy management software with WiFi network router
 - Receive wake-up signal input such as remote controller or sensor
 - Send WuR (or other) wake-up command from router
- The challenge navigating user convenience
 - Some devices take forever to boot ¹
- Can use sensor input and behavioral data to predict device demand and pre-boot when appropriate
 - Weights user convenience and energy savings factors for a performance score
 - Ex. Long-short-term memory based prediction with device grouping and longterm model improvement ¹

[1] Deep Learning Based Prediction Towards Designing A Smart Building Assistant System

- Many devices are always on in order to listen for software updates
 - Ex. Xbox One draws ~10W when "off"
- Let's allow the WiFi router to schedule automatic updates
 - Device schedules its wake-up with router
 - Device powers off (with standby killer)
 - Router wakes device at appointed time
 - Device checks internet for appropriate updates
 - Repeat

Source: [1]

Copyright notice (if used) can go here

Thank you for your interest.

By, Daniel Gerber Email: dgerb@lbl.gov Phone: 978-505-2305 Are You Throwing Energy Away? Don't, or Recover it!

