No Two Wide Bandgap Technologies are the Same: Switching Advantages of SuperGaN® ${ }^{\circledR}$ FETs and Innovation Philip Zuk
 transpherm

Presented at APEC'22 (IS11)

Agenda

- Broad market, application and power supplier
- Current Technology Platform
- 650 V SuperGaN ${ }^{\circledR}$
- Comparison to previous Gen III technology
- Comparison to the latest SiC technology
- 900 V GaN FET Technology
- Innovation
- 1200 V technology
- Short Circuit Control Limiter (SCCL)
- Summary

One Core Platform, Crossing the Power Spectrum

Product Mix and Growth From 45 W Through 4 kW

Field Reliability for Wide Market Adoption (45 W to 4 kW)

Gen IV vs, Gen IIII and Silicon Comparison

Drive Simplicity

Gen IV vs. Gen III: Reduced $\mathrm{Q}_{\text {oss }}$ by ~10\%

Gen IV vs. Gen III: Faster Switching w/Reduced Oscillation

SuperGaN

Turn-on: Gen IV is faster => higher spike, can be controlled by V_{G} or R_{G}
Turn-off: Gen IV has much lower turn-off ringing due to special design to avoid oscillation in FWD mode.

Gen IV: Simplified Packaging Innovation

- Most robust gate/best-in-class reliability
- "One chip like" assembly (< cost), less wires
- Patented innovation, higher performance

Gen IV: Reduction in Power Loss by ~15\%

SuperGaN

- Gen IV does not need a snubber
- Efficiency improvement $\sim 0.15 \%$ at peak (Snubber: 0.1%, Gen IV: 0.05\%)
- Efficiency increase: 0.2-0.5\% at low power

Gen IV: Continued Performance Benefit

Efficiency Higher than 98.6% at 200 kHz and 98.2\% at 300 kHz

Synchronous Boost (200 kHz)

Synchronous Boost (300 kHz)

- All test were in hard-switching (Expect higher Eff. in soft switching)
- Peak efficiency (200 kHz): SuperGaN Gen IV 98.70% => Best-in-class
- Peak efficiency (300 kHz): SuperGaN Gen IV 98.21% => Best-in-class

Gen IV: Maintains Ultralow Leakage with High BV

Gen IV: Offers Reduced Power Loss Over SiC

SuperGaN

| Half Bridge Synchronous Boost Converter (240 V : 400 V) | | | |
| :--- | :---: | :---: | :---: | :---: |
| Specifications | GaN | SiC MOS | SiC FET |
| Maximum power limit | $12 \mathrm{~kW}^{1}$ | $11 \mathrm{~kW}^{2}$ | $9.2 \mathrm{~kW}^{2}$ |
| On resistance @ $25^{\circ} \mathrm{C}$ | $15 \mathrm{~m} \Omega$ | $20 \mathrm{~m} \Omega$ | $18 \mathrm{~m} \Omega$ |
| Operating Frequency | 70 kHz | 70 kHz | 70 kHz |
| Gate drive voltage | 0 to 12 V | 0 to 18 V | 0 to 15 V |
| Gate drive resistor R_{G} | 15Ω | 5Ω | $0 / 50 \Omega$ |
| Driver consumption at 70 kHz | 288 mW | 540 mW | $\mathrm{~N} / \mathrm{A}$ |
| 1 I^{2} Gan FET junction temperature at 12 kW was $139^{\circ} \mathrm{C}$ | | | |
| ${ }^{2}$ SiC devices operating with a $165^{\circ} \mathrm{C}$ junction temperature | | | |

(SiC limited by device temperature)

Gen III: 900 V GaN FET: Continues to Outperform

Half Bridge Boost Converter: 560 V:808 V at 100kHz, Loss Reduction 12\%

Power Loss Reduction at Full Load

- GaN shows higher efficiency than SiC in 800 V converter and at a lower cost
- Commercially available SiC MOSFET with similar on resistance at $125^{\circ} \mathrm{C}$

1200 V GaN FET Achieves > 98.7\% Performance

Demonstrated > 99\% Efficiency at 50 kHz (Synchronous Boost)

Sync Buck Converter: $900 \mathrm{~V}: 450 \mathrm{~V}$ at 100 kHz

Ultralow Drain Leakage at 1400 V

Power Device: Technology Comparison

Standard GaN HEMTs

- Standard GaN HEMTs have high saturation current due to high performance 2DEG.
- Difficult to achieve short-circuit withstanding capability (!)

Short-Circuit Current Limiter (SCCL)

Y. Wu et al., U.S. Patents 9443849,8803246 \& 9171910

- Reduces the saturation current to achieve long SCWT, while preserving low $\mathrm{R}_{\text {on }} \checkmark$
- Easy to implement (no additional manufacturing costs) $\sqrt{ }$
- Highly customizable (the limiter can be easily tailored to adjust SCWT for any gate driver) $\sqrt{ }$

Short-Circuit Test

SCCL Technology:

- Short-Circuit capability improved more than $3 x \sqrt{ }$
- SCWT = $3 \boldsymbol{\mu s}$ @ 400 V $\sqrt{ }$

Standard (Fail X)
SCCL (Pass $\sqrt{ }$)

Circuit DESAT Results

- The short-circuit is detected and shutdown in $\mathbf{8 0 0} \mathbf{n s}$, a period sufficiently short to ensure the survival of the SCCL power device with ample margin. \checkmark
- The GaN power device with SCCL technology successfully survived the short-circuit event for all 100 repetitions \checkmark

Parameter	Pre SC Test	Post SC Test	Conditions
Static Ron $(\mathrm{m} \Omega)$	47	46	$\mathrm{I}_{\mathrm{d}}=8 \mathrm{~A}$
Dynamic Ron $(\mathrm{m} \Omega)$	55	54	$\mathrm{I}_{\mathrm{d}}=8 \mathrm{~A}$
Threshold Voltage (V)	4.1	4.1	$\mathrm{I}_{\mathrm{d}}=1 \mathrm{~mA}$
Gate Leakage (nA)	0.4	0.5	$\left(\mathrm{~V}_{\mathrm{g}} ; \mathrm{V}_{\mathrm{d}}\right)=(20 \mathrm{~V} ; 0 \mathrm{~V})$
Drain Leakage $(\mu \mathrm{A})$	2.2	1.8	$\left(\mathrm{~V}_{\mathrm{g}} ; \mathrm{V}_{\mathrm{d}}\right)=(0 \mathrm{~V} ; 750 \mathrm{~V})$

High Temperature Reverse Bias (HTRB)

- 80 parts at $150 \mathrm{C} / 520 \mathrm{~V}-1000$ hours: Zero Failures

SCCL Technology (1.5 $\mu \mathrm{s}$) Efficiency Test

The SCCL technology with $1.5 \mu \mathrm{~s}$ has peak efficiency greater than 99.2\%

Summary

- Transphorm's roadmap into the Future
- 650 V, 900 V, 1200 V, SCCL and other verticals
- Innovation: Vertically Integrated with an Asset Light Strategy
- Creating strategic partnerships along the way
- Continuing as a broad-based market/application supplier
- Maintaining Best-in-Class quality and reliability
- Simplicity of drive and design ability

Thank you for your interest.

By, Philip Zuk
Email: pzuk@transphormusa.com
Committee/Session
PSMA IS11
\section*{transpherm}

