No Two Wide Bandgap Technologies are the Same: Switching Advantages of SuperGaN® FETs and Innovation

Philip Zuk

Presented at APEC'22 (IS11)

Agenda

- Broad market, application and power supplier
- Current Technology Platform
 - 650 V SuperGaN®
 - Comparison to previous Gen III technology
 - Comparison to the latest SiC technology
 - 900 V GaN FET Technology
- Innovation
 - 1200 V technology
 - Short Circuit Control Limiter (SCCL)
- Summary

One Core Platform, Crossing the Power Spectrum

Product Mix and Growth From 45 W Through 4 kW

Field Reliability for Wide Market Adoption (45 W to 4 kW)

Gen IV vs, Gen IIII and Silicon Comparison

Gen IV vs. Gen III: Reduced Q_{oss} by ~10%

Gen III vs. SuperGaN (Q_{OSS})

Gen III vs. SuperGaN (E_{ON}/E_{OFF})

Gen IV vs. Gen III: Faster Switching w/Reduced Oscillation

<u>Turn-on</u>: Gen IV is faster => higher spike, can be controlled by V_G or R_G

<u>Turn-off</u>: Gen IV has much lower turn-off ringing due to <u>special design to avoid oscillation</u> in FWD mode.

Gen IV: Simplified Packaging Innovation

- Most robust gate/best-in-class reliability
- "One chip like" assembly (< cost), less wires
- Patented innovation, higher performance

Gen IV: Reduction in Power Loss by ~15%

- Gen IV does not need a snubber
- Efficiency improvement ~0.15% at peak (Snubber: 0.1%, Gen IV: 0.05%)
- Efficiency increase: 0.2-0.5% at low power

Gen IV: Continued Performance Benefit

Efficiency Higher than 98.6% at 200 kHz and 98.2% at 300 kHz

- All test were in <u>hard-switching</u> (Expect higher Eff. in soft switching)
- Peak efficiency (200 kHz): SuperGaN Gen IV 98.70% => Best-in-class
 - Peak efficiency (300 kHz): SuperGaN Gen IV 98.21% => Best-in-class

Gen IV: Maintains Ultralow Leakage with High BV

1000 V breakdown even at higher 175°C temperature

- Breakdown at 150°C: 1050 V
- Breakdown at 175°C: 1000 V

Gen IV: Offers Reduced Power Loss Over SiC

Half Bridge Synchronous Boost Converter (240 V: 400 V)					
Specifications	GaN	SiC MOS	SiC FET		
Maximum power limit	12 kW ¹	11 kW ²	9.2 kW ²		
On resistance @ 25°C	15 mΩ	20 mΩ	18 mΩ		
Operating Frequency	70 kHz	70 kHz	70 kHz		
Gate drive voltage	0 to 12 V	0 to 18 V	0 to 15 V		
Gate drive resistor R _G	15 Ω	5 Ω	0/50 Ω		
Driver consumption at 70kHz	288 mW	540 mW	N/A		

 $^{^{1}\,\}mbox{Gan FET}$ junction temperature at 12 kW was 139°C

Device Power Loss Comparison (9.2 kW) (Limited due to SiC FET device temperature)

Maximum Power Comparison (SiC limited by device temperature)

² SiC devices operating with a 165°C junction temperature

Gen III: 900 V GaN FET: Continues to Outperform

Half Bridge Boost Converter: 560 V:808 V at 100kHz, Loss Reduction 12%

- GaN shows higher efficiency than SiC in 800 V converter and at a lower cost
- Commercially available SiC MOSFET with similar on resistance at 125°C

1200 V GaN FET Achieves > 98.7% Performance

Demonstrated > 99% Efficiency at 50 kHz (Synchronous Boost)

---1200 V TPH

Output Power (W)

Power Device: Technology Comparison

Standard GaN HEMTs

- Standard GaN HEMTs have high saturation current due to high performance 2DEG.
- Difficult to achieve short-circuit withstanding capability (!)

Short-Circuit Current Limiter (SCCL)

Y. Wu et al., **U.S. Patents** 9443849, 8803246 & 9171910

- Reduces the saturation current to achieve long SCWT, while preserving low R_{on} ✓
- Easy to implement (no additional manufacturing costs) √
- Highly customizable (the limiter can be easily tailored to adjust SCWT for any gate driver) √

Short-Circuit Test

SCCL Technology:

- Short-Circuit capability improved more than 3x √
- SCWT = 3 µs @ 400 V √

Standard (Fail X)

SCCL (Pass √)

Circuit DESAT Results

- The short-circuit is detected and shutdown in 800 ns, a period sufficiently short to ensure the survival of the SCCL power device with ample margin. √
- The GaN power device with SCCL technology successfully survived the short-circuit event for all 100 repetitions √

Parameter	Pre SC Test	Post SC Test	Conditions
Static Ron (mΩ)	47	46	$I_d = 8 A$
Dynamic Ron (mΩ)	55	54	$I_d = 8 A$
Threshold Voltage (V)	4.1	4.1	$I_d = 1 \text{ mA}$
Gate Leakage (nA)	0.4	0.5	$(V_g; V_d) = (20V; 0V)$
Drain Leakage (μA)	2.2	1.8	$(V_g; V_d) = (0V; 750V)$

High Temperature Reverse Bias (HTRB)

80 parts at 150C / 520 V – 1000 hours: Zero Failures

SCCL Technology (1.5 µs) Efficiency Test

Half-bridge **boost converter** (240V:400V, 50 kHz)

Courtesy of P. Joshi and G. Bolante, Transphorm Inc.

The SCCL technology with 1.5 µs has peak efficiency greater than 99.2% ✓

Summary

- Transphorm's roadmap into the Future
 - 650 V, 900 V, 1200 V, SCCL and other verticals
- Innovation: Vertically Integrated with an Asset Light Strategy
- Creating strategic partnerships along the way
- Continuing as a broad-based market/application supplier
- Maintaining Best-in-Class quality and reliability
- Simplicity of drive and design ability

Thank you for your interest.

By, Philip Zuk
Email: pzuk@transphormusa.com
Committee/Session
PSMA IS11

