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Agenda

• Introduction to Totem Pole Power Factor Correction (TPFC)

• Reasons for slow adoption of TPFC

• Compare and contrast key parameters: GaN vs SiC vs HV SJ FET

• Totem Pole PFC performance & Role of WBG devices
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Why Totem Pole PFC?
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Modern power devices, topologies, and control techniques have tremendously improved the 
efficiency of the PFC and the Dc-Dc stage.

The bridge diode has remained the same and hasn’t utilized any of the latest advancements.



Estimated Bridge Diode Power Loss
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Bridge diodes dissipate tremendous amount of power needing bulky heat sinks and 
are a major impediment to improve power density

16’’ laptop w. 240 W adapter



How to make a Boost PFC more efficient
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Replace all the diodes 
with FETs

Replace all the diodes with FETs. Active Bridge + Synchronous Boost 

2 switches in the ‘bridge’ and 1 FET in the boost stage are always conducting.

Active bridge solution is 
costly & clunky



Rearranging Classical Boost Converter
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Totem Pole PFC
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Totem Pole is an elegant 4 switch boost solution that reduces number of components in 
the current path.

1 FET in the “diode” section (Low Freq leg) and 1 FET in the boost section conducting.



Totem Pole PFC Efficiency Gain
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Totem Pole PFC can result in up to 9 W savings or 30% reduction in losses 
Data captured on a 500 W PFC at 90 Vac. Std Boost utilized SiC diode
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1.8% efficiency gain
30% reduction in losses

~ 9W savings 



Positive Half Cycle Operation
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• PWML is responsible for Pulse Width Modulation or 
duty cycle control aka “D”

• Inductor current ramps up during this phase

• SRL is kept on through out the positive half line cycle

• PWMH is the synchronous boost FET and is responsible 
for the “1-D” operation.

• Inductor current ramps down during this phase

• Notice the direction of current flow



Negative Half Cycle Operation
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• PWMH is responsible for Pulse Width Modulation or 
duty cycle control aka “D”

• Inductor current ramps up during this phase

• SRH is kept on during the entire cycle

• PWML is the synchronous boost FET and is responsible 
for the “1-D” operation.

• Inductor current ramps down during this phase

• Notice the role reversal of the fast leg switches  i.e., 
PWMH and PWML. 



Reasons for Slow Adoption
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Cost & Complexity

• 4 Switch topology 
-2 switch implementation w. slow leg diodes possible

• 2 Gate Drivers
• Bidirectional nature of inductor current

Technical challenges

• Poor Qrr & High Coss of HV SJ FETs 
• Lack of specific PFC controllers. 
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Reverse Recovery in TPFC
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Totem Pole PFC is a synchronous boost topology; reverse recovery performance of the switch is very
important in CCM.

SJ FETs have poor reverse recovery characteristics compared to SiC diodes used in classical boost PFC
operating in CCM

On paper, reverse recovery of SJ FETs shouldn’t cause any challenges in CrM

Positive Half-Cycle Negative Half-Cycle



Reverse Recovery Performance
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Even the fast recovery type SJ FETs have poor reverse recovery performance preventing CCM 
operation
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Key Parameters System impact

Ron*Qg Efficiency, trade-off b/n conduction and 
switching loss

Ron temp 
Variation

Applicability in high temp & high-power 
environment

Comparison of HV Switch Technologies
Quite a few competing switch technologies challenging 
industry standard Si SJ FET such as:

1. Cascode GaN (Si FET + GaN D Mode)
2. Cascode SiC (Si FET + SiC JFET)
3. eGaN HEMT (enhancement mode GaN)
4. Enhancement mode SiC

SiC is a superior device for high temp apps



Comparison of HV Switch Technologies
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GaN with its Zero Qrr is a superior device for 
hard-switching apps.  SiC is not too far behind
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Lower the Coss, lower the circulation currents
GaN is better for AC Flyback

Qrr of SJ FET is an order of magnitude higher than Qrr of WBG devices resulting in 
slow adoption of hard switching topologies such as TPFC in CCM.
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TPFC CrM Inductor Current Waveforms

420 mA  Neg. Current 1060 mA Neg. Current540 mA Neg. Current

80 mΩ SJFET45 mΩ SiC50 mΩ GaN

Amount of negative current is a function of Coss and Qrr. 

115 Vac, 300 W CrM
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Inductor Current Waveforms
115 Vac, 300 W CrM

50 mΩ GaN 45 mΩ SiC 80 mΩ SJFET

Visually, we can notice that SJ FET w. same controller has more distortion
Constant on-time control in conjunction w. negative current increases zero cross distortion

Increased zero cross distortion



TPFC CrM THD
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Wide Bandgap switches result in better THD in CrM due to lower negative inductor current
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SJ FETs do work in CrM but its performance is inferior. 



Lack of easy-to-use controllers
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Standard analog PFC ICs don’t include:
• Polarity detection 
• Fast leg switch’s role reversal circuit
• Reconstructed haversine
• Zero current detection for sync FET

Cost & Complexity is a challenge:
• Bidirectional current sensor
• Complex SW node valley detectors
• Use of synchronous FET & half-bridge 

drivers
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New Generation of Easy-to-use ICs
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A family of Totem Pole PFC controllers that can operate in CrM and CCM suitable for 
power ranges from 90 W to multi kW range



Typical Application Schematic NCP1681 CCM 

21 A simple current sensing scheme eliminates the need for hall-effect sensors.



Polarity and Reconstructing Sinewave
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•Polarity detection
•AC Line Frequency Monitoring
•Brownout protection feature
•Line level detection
•AC zero crossing drive management 

•Classical rectified sinewave is reconstructed inside the IC.



Simple Current Sensor
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A simple current limit scheme with a resistor for both ZCD and current limit 
removes complexity and reduces cost



NCP1680 - CrM Efficiency Comparison
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GaN outperforms in light load due to its low capacitance



NCP1681 - CCM Efficiency Comparison

GaN’s efficiency is higher at lower power due to lower capacitance, however, SiC is 
a better device for higher power due to lower variation of Ron vs. temperature
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Conclusion

Wide Bandgap devices will drive the mainstream adoption of 
TPFC.

New generation of TPFC controllers are easy to use and allow a 
lower cost BoM

Will the bridge diodes be relegated to history?
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