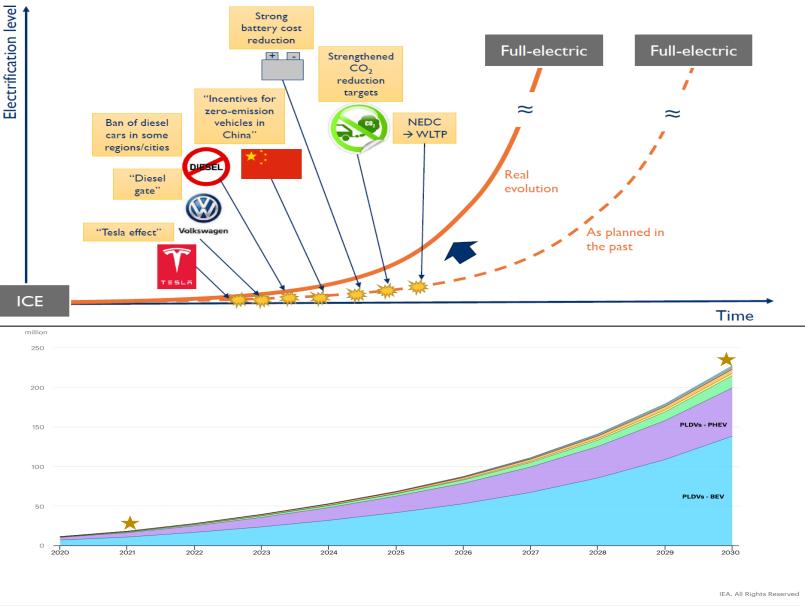


Performance Parameters of SiC MOSFETs for Automotive Inverters

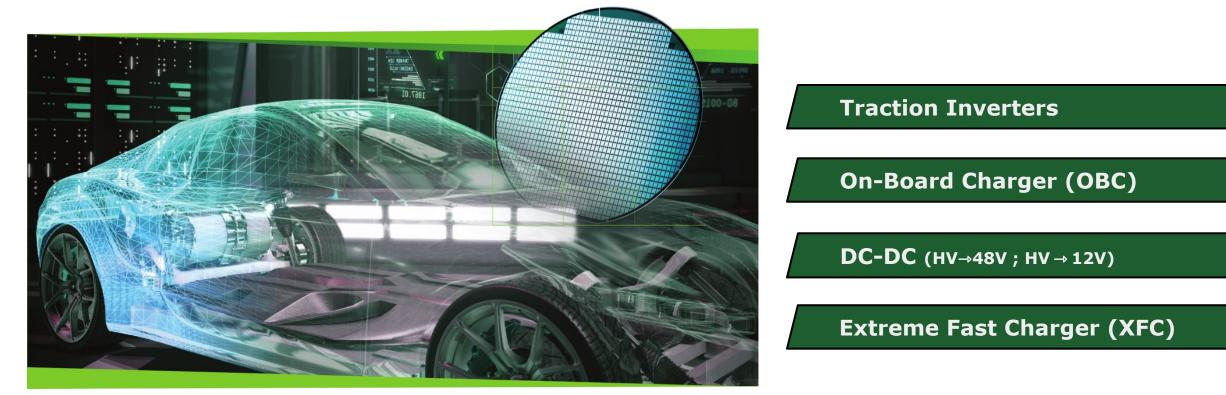
Ranbir Singh, Sumit Jadav, Siddarth Sundaresan and Vamsi Mulpuri


GeneSiC Semiconductor, Inc.

APEC 2022 – Houston, TX IS 11.4 – Wednesday – March 23, 2022 – 3.45 PM to 4.10 PM

Vehicle Electrification Trends

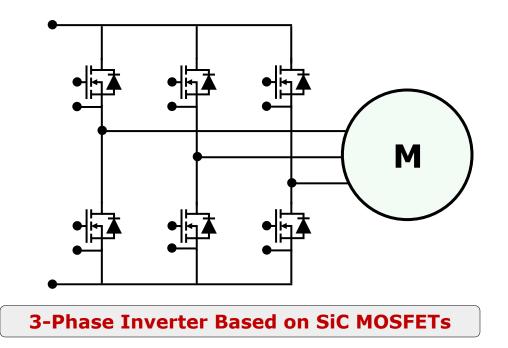
NEDC: New European Driving Cycle WLTP: Worldwide Harmonized Light Duty Vehicles Test Procedure



- About 200 million
 electric vehicles
 expected on road by
 2030
- Market share of EVsexpected to exceed30% by 2030
- ~9 % of global new
 car sales in 2021 were
 electric vehicles

PLDVs - BEV
 PLDVs - PHEV
 LCVs - BEV
 Buses - BEV
 Buses - PHEV
 Trucks - BEV
 Trucks - BEV
 Trucks - PHEV

Silicon Carbide (SiC) – Key Applications in Electric Vehicles

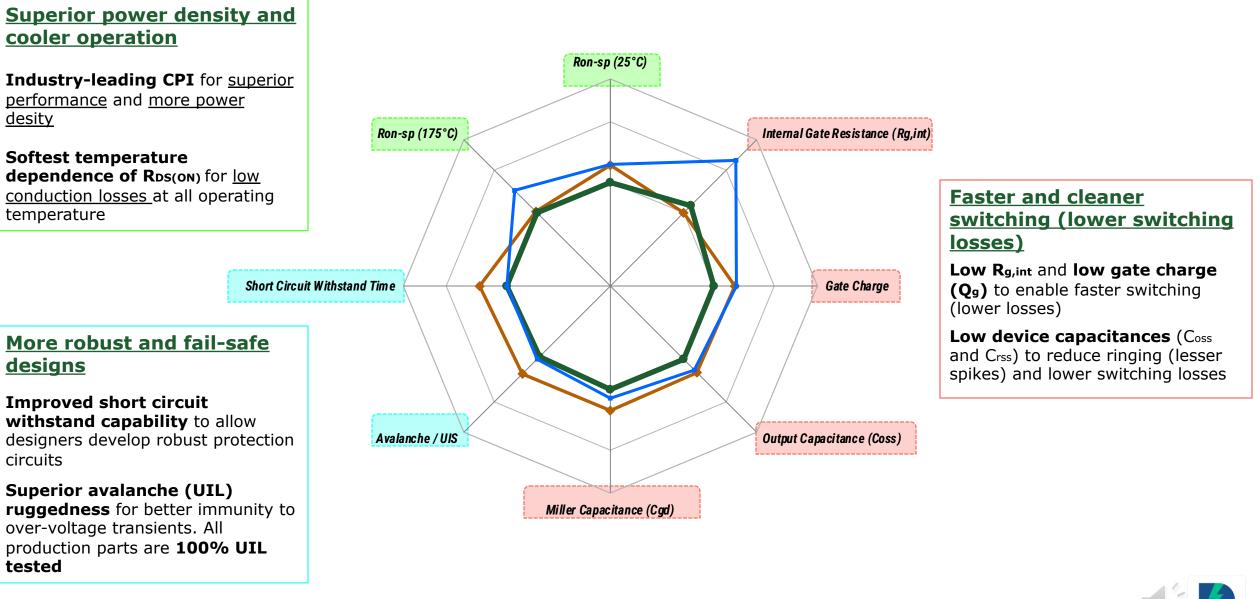


- ✓ SiC technology is revolutionizing vehicle electrification <u>Higher Voltage</u> → <u>Greater Power</u> → <u>Better Efficiency</u> → <u>Smaller Size</u> → <u>Lighter Weight</u>
- \checkmark SiC is proven significantly better than conventional silicon power device based solutions
- ✓ No longer a question of Si IGBT v/s SiC MOSFET in traction inverters !
 <u>All leading OEMs adopting SiC</u>

SiC MOSFET in EV/HEV Traction Inverters

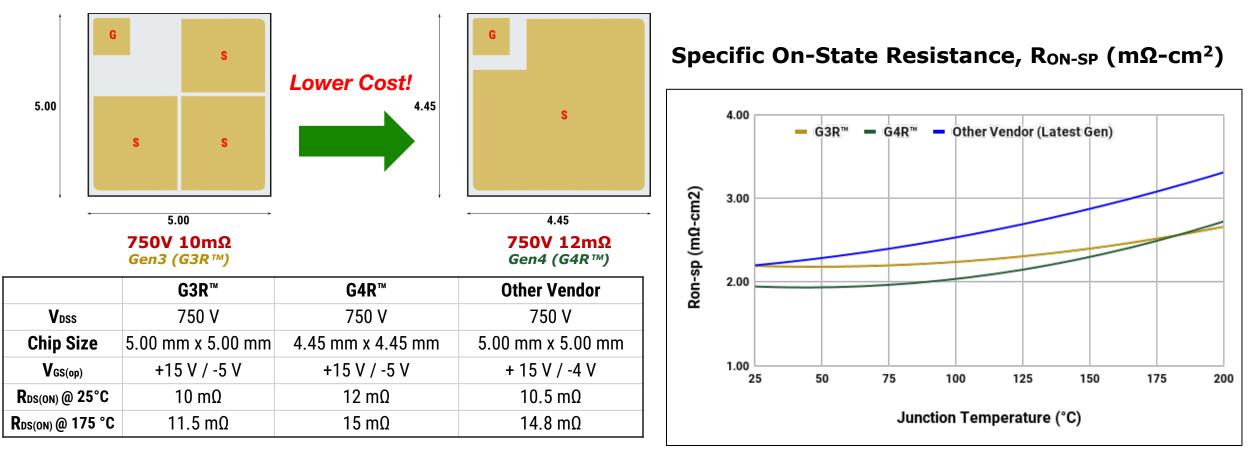
✓ Nominal power ranging from 10 kW (ICE assistance) to 200 kW (pure EV) V_{BUS} : 400 V – 450 V → **750V SiC MOSFET** V_{BUS} : 700 V – 800 V → **1200V SiC MOSFET**

- ✓ Bi-directional operation (feeding electric motor + regenerative braking)
- ✓ 80% or more reduction in total inverter losses when compared with silicon-based (IGBT) solutions (same voltage, same switching frequency, same cooling)


Do all SiC MOSFET technologies existing in the market offer similar performance, robustness and quality ? SHORT ANSWER = NO

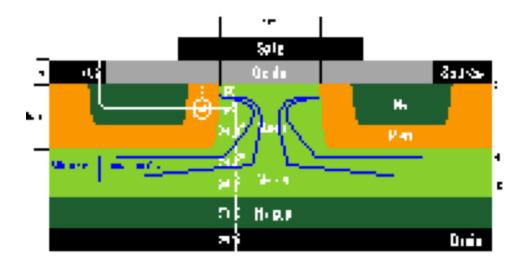
There are <u>significant differences</u> at the power device technology level and power electronics designers must perform thorough evaluation/assessment of each SiC MOSFET technology to maximize their system performance and robustness.

Which SiC MOSFET Parameters Differ by Each Vendor / Technology and how do they affect the performance ? NEXT SLIDE



750V SiC MOSFET Technology Comparison

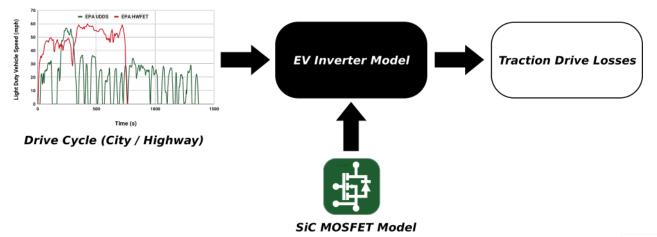
Specific On-State Resistance (RON-SP) v/s Temperature


Requirements for Better Efficiency in all Drive Cycles (all Load Conditions) :

- ✓ Low Ron-sp (m Ω -cm²) at all temperatures (T_J)
- $\checkmark~$ Cleaner switching performance and lower switching losses

i.e. Low Gate Charge (Q_G), Low Internal Gate Resistance, Low C_{RSS}, Low Q_{OSS}, Low Q_{RR}

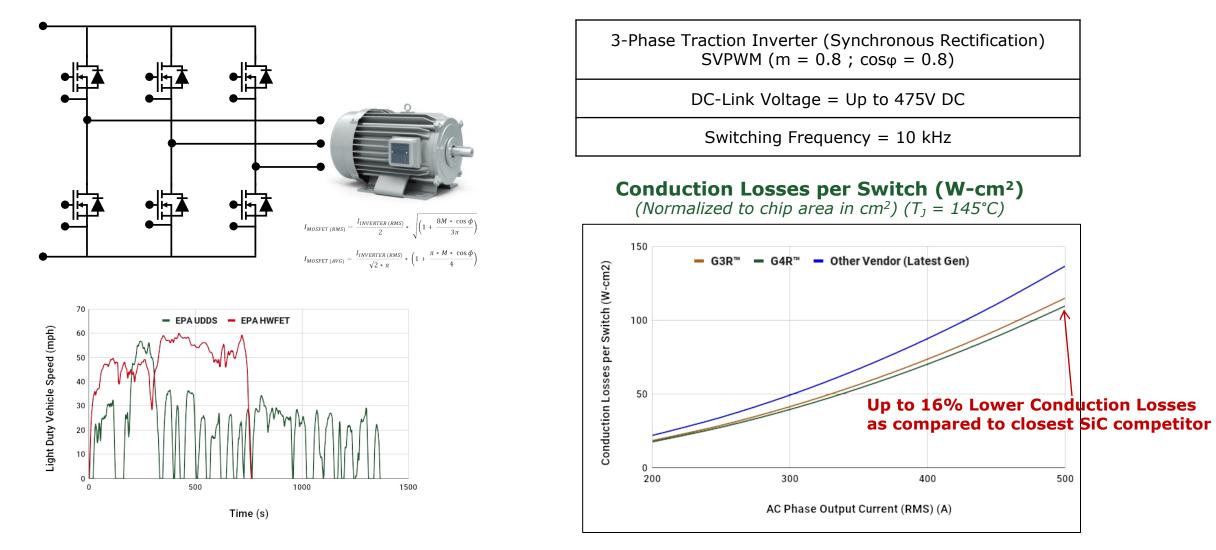
Physics-Based SPICE Model for Reliable Circuit Simulations

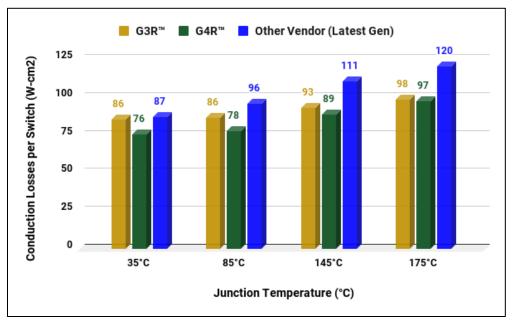


On-Resistance Components

(1)	R _{source}	Source metal resistance		
(2)	R_{ch}	Channel resistance		
(3)	R_{acc}	Accumulation region resistance		
(4)	R_{JFET}	JFET region resistance		
(5)	R _{drift-var}	Bias-dependent drift layer resistance		
(6)	R _{drift-con}	Drift layer resistance		
(7)	R_{sub}	Substrate resistance		
(8)	R _{drain}	Drain metal resistance		

✓ Sophisticated and accurate physical model


- ✓ Scalable device design and process parameters included
- ✓ Straight forward model parameter definition process
- ✓ Easy measurement-based calibration
- \checkmark Covers the wide operating temperature range of SiC MOSFET
- \checkmark Accurate modeling of gate-bias and drain-bias dependencies
- ✓ Compatible with commercially available SPICE software suites
- ✓ Low computational effort and high efficiency


Splitting of R_{DS(ON)} **components is necessary to realize accurate temperature, gate-bias and/or drain-bias dependencies**

Reducing Power Device Losses in Traction Inverters

 Lowest possible conduction losses can be achieved by SiC MOSFETs with lowest Ron-sp (mΩ-cm2) and softer temperature dependence of R_{DS(ON)} (Better Temperature Coefficient) for all drive cycles – Urban Dynamometer Driving Schedule (UDDS) ; Highway Fuel Economy Test (HWFET)

Superior Drive Cycle Efficiency with Better SiC MOSFET Technology

Conduction Losses per Switch (W-cm²)

Conduction Losses per Switch (W-cm2)

30

20

10

I_{RMS} = **450 A** (AC Phase Output Current; 3-Ph Inverter)

85°C

Other Vendor (Latest Gen)

145°C

30 30

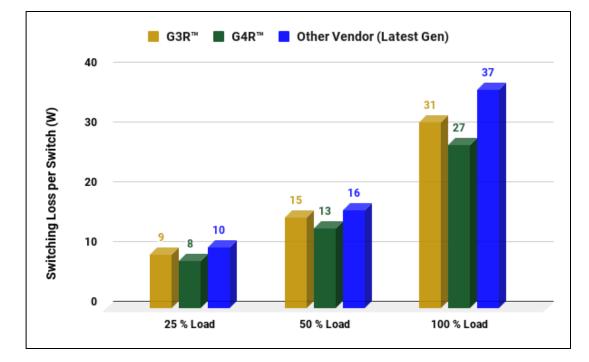
175°C

G3R[™]

35°C

G4R[™]

 \checkmark Light-Load Condition (I_{RMS} = 250A)


- $> \sim 18\%$ reduction in conduction losses possible when temperature (T_J) is in the 85°C 145°C range.
- $> \sim 20\%$ reduction when operating temperature is in the 145°C 175°C range
- ✓ <u>Heavy-Load Condition</u> (I_{RMS} = 450A)

 $> \sim 20\%$ reduction in conduction losses possible when temperature (T_J) is in the 85°C – 175°C range.

Superior Drive Cycle Efficiency with Better SiC MOSFET Technology

Working Load v/s Switching Losses per Switch (W) ; f = 10 kHz

FULL LOAD – 100 % I_{RMS} = 450 A (AC Phase Output Current; 3-Ph Inverter) I_{RMS-SW} = 280 A (Per Switch Position) (4 Paralleled Dies per Switch Position; 70A RMS per Die)

NOMINAL LOAD - 50%

I_{RMS} = 250 A (AC Phase Output Current; 3-Ph Inverter) I_{RMS-SW} = 155 A (Per Switch Position)

(4 Paralleled Dies per Switch Position; 38A RMS per Die)

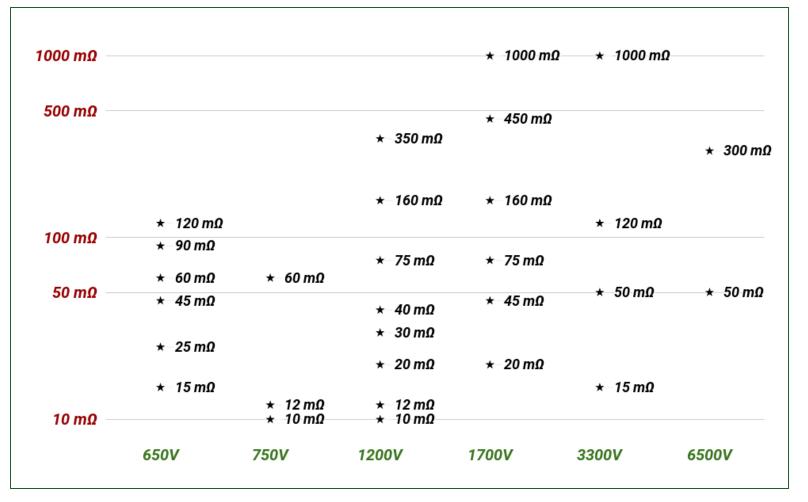
✓ Full Load Condition

> ~25% reduction in switching losses possible (comparing G4R[™] v/s closest SiC competitor)

✓ Nominal Load Condition

➤ ~18% reduction in switching losses possible (comparing G4R[™] v/s closest SiC competitor)

Criteria to Judge SiC MOSFETs


METRICS	WHAT IS REQUIRED ?	HOW TO ASSESS ?		
Performance	 Superior Figure-of-Merit (FoM) Efficient and Cooler Operation under all Conditions 	 ✓ Low Ron(SP) ✓ Better Temperature Coefficient of RDS(ON) ✓ Better Switching Performance 		
Robustness	 Avalanche Robustness Short-Circuit Robustness 	 ✓ Sufficient E_{AS} Rating ✓ Sufficient Short Circuit Withstand Time 		
Reliability	 No V_{TH} Drift (Reliable Gate Oxide) Stable Performance under Body Diode Operation 	 ✓ Vтн Stability Under NBTS and PBTS ✓ DIBL Effect (Vтн v/s VDs) ✓ Body Diode Reliability 		
Quality	 Robust manufacturing process Automotive-qualified production line 	✓ Tight Vтн and Rds(ON) Distribution		
Price	 Competitive price and Fast turn-Around Supply Chain Stability and Superiority 	 ✓ Low Ron(SP) for Lower Cost ✓ Robust Supply Chain ✓ Capacity and Turn-Around Times 		

SiC MOSFET Bare Chips for EV/HEV Traction Inverters

		P/N	Technology	Metallization	Image
750V	10 mΩ	G3R10MT07-CAU	G3R™	Top-Side : Ni+Pd+Au Back-Side : Ni+Pd+Au	5.00
	12 mΩ	G4R12MT07-CAU	G4R™	Top-Side : Ni+Pd+Au Back-Side : Ni+Pd+Au	6.45 0
1200V	20 mΩ	G3R20MT12-CAL	G3R™	Top-Side : Al Back-Side : Ni+Ag	6.98 2.97
	12 mΩ	G3R12MT12-CAL	G3R™	Top-Side : Al Back-Side : Ni+Ag	3 4.36 7.26
	10 mΩ	G4R10MT12-CAU	G4R™	Top-Side : Ni+Pd+Au Back-Side : Ni+Pd+Au	5.45

Most Comprehensive SiC MOSFET Portfolio – 650V to 6500V

50+ SiC MOSFET Products

 \checkmark **650V/750V** \rightarrow 10 m Ω to 120 m Ω

- \checkmark **1200V** \rightarrow 10 m Ω to 350 m Ω
- \checkmark **1700V** \rightarrow 20 m Ω to 1000 m Ω
- \checkmark **3300V** \rightarrow 15 m Ω to 1000 m Ω
- \checkmark **6500V** \rightarrow 50 m Ω to 300 m Ω

Questions

Ranbir Singh, PhD.

President - GeneSiC Semiconductor, Inc.

Email : *ranbir@ieee.org* Phone : +1 703 996 8200

IS 11.4 – Wednesday – March 23, 2022 – 3.45 PM to 4.10 PM

