

System Integrated Manufacturing and Packaging Trends and Roadmaps

Hongbin Yu

School of Electrical, Computer and Energy Engineering Arizona State University

NSF Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)

Hongbin Yu, Center Director

Phase I: 2016-2022; Phase II: 2022-2027

https://evsts.asu.edu

NSF Center for Efficient Vehicles and Sustainable Transportation Systems (EVSTS)

Center for Efficient Vehicles and Sustainable Transportation Systems

Getting Around. Our vehicles – getting us to work. To school. To family. To fun. Now more than ever, ground transportation for humans – plus the necessity of effectively, efficiently, and quickly transporting vital goods – is more than a priority. It's a lifeline.

Research = Results. This center combines the best academic minds from four universities with industry-leading OEMs and their suppliers to work together on applied, pre-competitive research. The result? Technologies, methodologies, and tools that shape all aspects of energy-efficient, environmentally sustainable ground vehicles and the infrastructure that supports them.

Transportation Systems and Infrastructure

Thrust areas: Electrified Vehicle Powertrains, Conventional Powertrains and Alternative Fuels, Vehicle Systems Optimization, Efficient/Sustainable Autonomous Vehicles,

Member login

EVSTS Website Homepage: https://evsts.asu.edu

Industry members

The Importance of Advanced Packaging

- Packages provide power, signal, mechanical stability, and thermal dissipation to Si chips
- Complex 2.5D and 3D designs can place multiple chips side by side, or stack them on top of each other
- Allows scaling without shrinking transistors
- Can incorporate many kinds of chips and features into a single package

Integration of Inductor in IVR

Discrete inductor on mother board

Surface mount inductor

Inductor on/in package

Air core inductor

Large size & EMI

Magnetic Materials Direct integration of magnetic core

Advantages: Smaller footprint; low

height profile

Challenges: material compatibility;

thermal effect

Inductor on Si chip

TPS 82671 MicroSiP Step-Down Converter

Intel

Post CMOS Si or interposer: Ferric

Challenge: Dimension

Figure.1 Close-up view of the inductors integrated in (a) 22-nm processor (b) 14nm processor. [1]

Figure.2 The substrate core thickness scaling down of 3 generations of a mobile CPU. The inductors are integrated in this layer. [2]

^[1] Lambert, William J., et al. "Package inductors for Intel fully integrated voltage regulators." *IEEE transactions on components, packaging and manufacturing technology* 6.1 (2015): 3-11.

^[2] Kaladhar Radhakrishnan. "Integrated Magnetics Magnetic Inductors for Next Generation IVR." The 7th International Workshop on Power-Supply-on-Chip (conference), 2021, Philadelphia, PA.

Challenge: Magnetic Core Integration

1.5 (C)

1.5 (C)

1.0 (D)

1.0

The schematic of a magnetic core inductor. A kind of magnetic flakes mixed in polymer matrix is used as core material. [1]

Our fabricated device. CoZrTaB is used as core material.

The B-H loop of CoZrTaB thin films on different substrates. [2]

[2] Wu, Yanze, I-Chen Yeng, and Hongbin Yu. "The improvement of CoZrTaB thin films on different substrates for flexible device applications." *AIP Advances* 11.2 (2021): 025139.

^[1] Sun, Teng, et al. "Substrate embedded thin-film inductors with magnetic cores for integrated voltage regulators." *IEEE Transactions on Magnetics* 53.10 (2017): 1-9.

Two kinds of integration methods for the inductor devices.

	Ni-Fe	Co-Zr-Ta	Co-Zr-Ta-B
μ	<650	1000	1070
ρ	20 μΩ·cm	100 μΩ·cm	115 μΩ·cm
FMR	640 MHz	1.4GHZ	1.6GHz

Higher resistivity CoZrTaB leads to higher frequency response to GHz range

the inductor devices.

Required process:

Lithography

Spin-coating

Cu Pattern Preparations

Schematic of the finished Cu layer of step 2 (Covered with polyimide).

Top view of the finished Cu layer of step 1.

Cu pattern under microscope

Magnetic core Preparations

Schematic of the liftoff preparations (upper layer and lower layer).

Magnetic core Preparations

Schematic of the patterned magnetic thin films (upper layer and lower layer).

Device Assembly

Flip-chip bonding

One more lithography & dry etch to get the measurement windows

A finished device under microscope.

Schematic of the device bonding process (after bonding).

Measurement Results (Magnetic Core)

Measurement Results (Air Core)

Automotive Processor Roadmap – Infotainment/ ADAS

Advances in Package Structures in Power Electronics for Vehicle Electrification

Conclusion

- Power Delivery driven by high density, efficient, and low cost
- Advances in packaging demand/enable more power delivery innovation
- Magnetic core inductors can be integrated on package or in package
- Different applications have different emphasis, thus implementation: IoT/mobile, HPC, automotive

