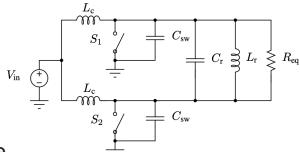


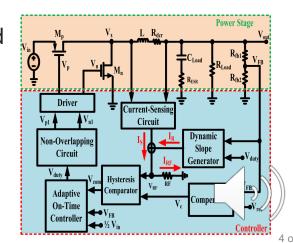
Circuits and Topologies: Review and Trends

Bruno ALLARD, Univ. Lyon Aleksandar PRODIC, Univ. Toronto

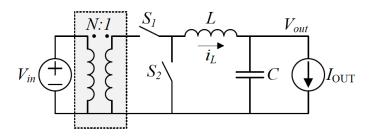
PwrSoC for Next Generation Power Delivery & Management

Paper Number


Agenda


- Review of sub-topics 2010-2021
 Available at http://pwrsocevents.com
- Main subtopics
 - HF/VHF converters
 - SC and hybrid converters
 - Control for fast dynamics
 - Ultra low-power converters
- Trends

Motivations


- X. Zan and A. -T. Avestruz, "100MHz Symmetric Current-Mode Class D Wireless Power Transfer," in IEEE Journal of Emerging and Selected Topics in Power Electronics, doi: 10.1109/JESTPE.2022.3148973.
- 2. A Laspeyres et al, "An improved monitoring of gate leakage current on SiC Power MOSFETs using source driver topology,", PCIM Europe Conference, 2022
- 3. J. -J. Chen, Y. -S. Hwang, W. -M. Jiang, C. -H. Lai and J. Ku, "A New Improved Ultra-Fast-Response Low-Transient-Voltage Buck Converter With Transient-Acceleration Loops and V-Cubic Techniques," in IEEE Access, vol. 10, pp. 3601-3607, 2022, doi: 10.1109/ACCESS.2022.3140279.

High Density DC-DC Converter:

Key → *Reduce passive component volume*

- Smaller inductor, capacitor
- Increase in frequency dependent losses (winding, core, gate drive etc.)

$$\Delta i_{pp} \propto \frac{V_{in}}{f_{sw}L} \rightarrow V_{H}$$

$$\Delta v_{out,pp} \propto \frac{\Delta i_{pp}}{f_{sw}C_{out}} \rightarrow \begin{bmatrix} A & s \\ F \end{bmatrix}$$

- Strategy 2: Change Architecture
 - Reduce inductor ΔV
 - Multi-level or multi-stage converter
 - Possible double efficiency penalty
- Do Both?

IEEE PwRSoC revisited

Baoxing Chen

Fully integrated isolated dc-dc converters and isolated **half bridge gate driver** with integral power supply

David Perreault

Architectures, Topologies and Design Methods for Miniaturized VHF Power Converters

Elad Alon

Supply Impedance and Voltage Conversion Requirements for CMOS Digital ICs

Eduard Alarcon

Optimization and implementation of a **multi-level buck converter** for standard CMOS on-chip Integration

Seth Sanders

What about **switched capacitor** converters

Jose Cobos

Fast dynamics with non linear control – merits and limitations

IEEE PwRSoC revisited

Rais Miftakhutdinov

PSiP and PwrSoC Based Opportunities and Solutions for High Power Systems

Eby Friedman

Small Area Power Converter for Application to **Distributed On-Chip** Power Delivery

Olivier Trescases

Gate-Charge Recovery for Light-Load Efficiency Improvement in **High-Frequency** DC-DC

Converters

David Anderson

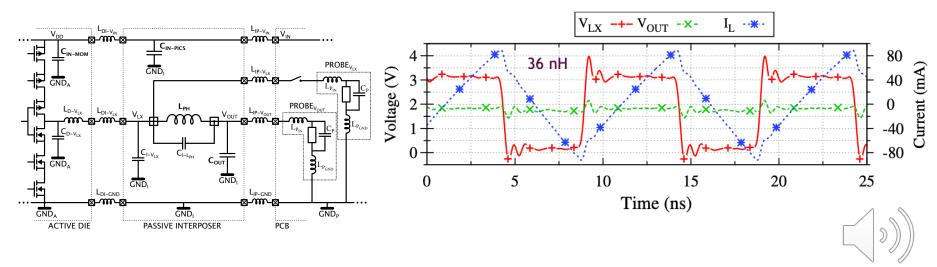
Compact, Cost-effective, Efficient Power: Is there a **sweet-spot** for integration?

Seth Sanders

Integrated Power Conversion – The **Switched Capacitor** Approach

Gabriel A. Rincón-Mora

Energy-Harvesting Switching Converter ICs



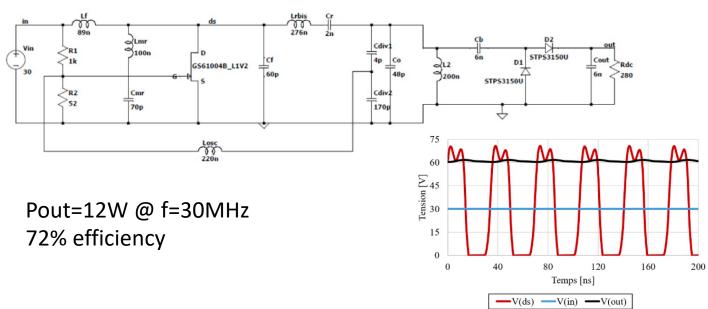
HF vs VHF

HF converter targets the increase in frequency (+100 MHz) of classical topologies


F. Neveu et al., "A 100 MHz 91.5% Peak Efficiency Integrated Buck Converter With a

Three-MOSFET Cascode Bridge," in IEEE Transactions on Power Electronics, vol. 31, no.
6, pp. 3985-3988, June 2016, doi: 10.1109/TPEL.2015.2502058.

HF vs VHF


VHF is now understood for converter with one switch (a minimum of switches), over
 300 MHz

S. Aldhaher, D. C. Yates and P. D. Mitcheson, "Modeling and Analysis of Class EF and Class E/F Inverters with Series-Tuned Resonant Networks," in IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3415-3430, May 2016.

HF vs VHF

R. Makhoul et al., "A Very High Frequency Self-Oscillating Inverter Based on a Novel Free-Running Oscillator," in IEEE Transactions on Power Electronics, vol. 34, no. 9, pp. 8289-8292, Sept. 2019.

| IEEE PwRSoC revisited

Gerhard Maderbacher, Stefano Marsili, Christoph Sandner

Digital Control Options for **Embedded DC-DC Converters** in CMOS SoC

Robert Pilawa

Soft Charging Switched Capacitor CMOS Power Converters-Increasing Efficiency and power Density Using a Merged Two-Stage Architecture

Rinkle Jain

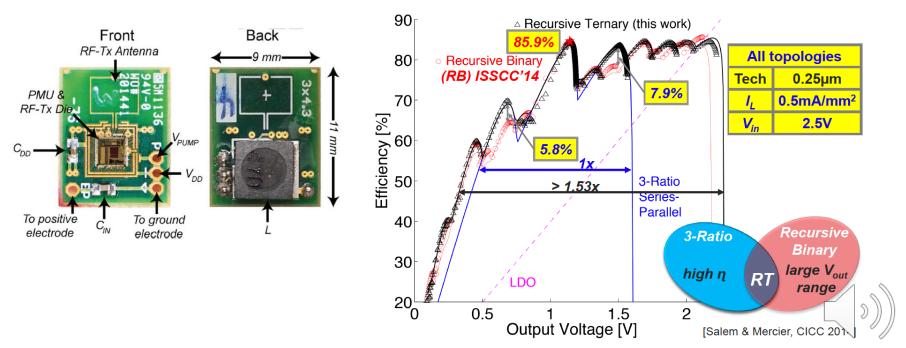
Enabling Aggressive Dynamic Voltage and Frequency Scaling in Many Voltage Domains using Distributed Switched Capacitor Voltage Regulators

Aleksandrar Prodic

Mixed-Signal IC Controllers and Low Volume SMPS

David J. Perreault, Antohny Sagneri

Design of Miniaturized, Isolated dc-dc Converters Operating at Radio Frequencies


Yogesh Ramadass

A 330nA Charger and Battery Management IC for Solar and Thermoelectric Energy

Energy harvester

Patrick P. Mercier et al., Energy extraction from the biologic battery in the inner ear, Nature Biotechnology, vol. 30, n°12, 2012

PWR14

IEEE PwRSoC revisited

David Perreault

Miniaturized High-Frequency Integrated Power Conversion for Grid Interface

Brian Ma

VHF Switching Power Converters with 1A/ns Scale Load Current Slew Rate

S.M. Ahssanuzzaman

High Power Density Power Management IC Module with On-Chip Inductors

Christophe Vaucourt

μDC/DC Modules: Fully Integrated DC-DC Converters

Christoph Sandner

Towards a **PowerSoC** Solution for Automotive Microcontroller Applications

Bruno Allard

State of the art of high switching frequency inductive DC-DC converters in SoC context

Seth Sanders, Univ. Berkeley, 2014, The Road to Integrated Power Conversion via the Switched Capproach

IEEE PwRSoC revisited

Jeff Morroni
Hybrid topologies

Mor Peretz

Dusan Graovac

Embedded power technologies for automotive

Jason T. Stauth

Resonant switched-capacitors converters

Fully-Integrated Digital Average Current-Mode Control Voltage Regulator Module IC

Brian Ma

Driving GaN Power Devices: Design Strategies and Circuit Techniques

Martin Haug

Integrated wide-input range converters (7-switch SC)

Stefano Saggini

Power MOS gating optimization for balancing efficiency vs. reliability in hard-switching

converters

Amit Jain

FIVR **Control** topology and design for distributed loads

5018

IEEE PwRSoC revisited

Christopher Schaef

Potential of **Hybrid** Converters in Computer Platform Power Delivery

Hanh-Phuc Le

Converter Topologies for Large Conversation Ratios: A Story from Switched-Capacitor to

Hybrid Architectures

Toke Andersen

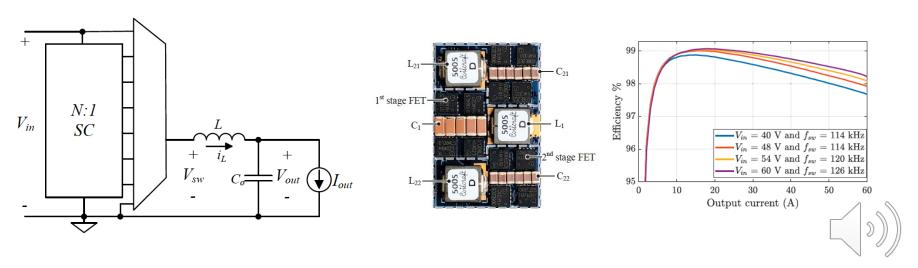
Towards **integration** of offline multi-MHz power Supplies

Alexandre Prodic

Control of Emerging Converter Topologies and High-Performance Controllers for High-

Frequency Low-Power SMPS

Frederik Spliid


Stacked Class E resonant Very High Frequency converter for European mains power factor

Correction

Sheng-Hsiang (Joe) Pan, A Monolithic Capacitor Current Constant On-Time Controlled Buck Converter, Achieving Near Optimal Response without Stability Trade-off

Hybrid converters

T. Ge, Z. Ye, R. A. Abramson and R. C. N. Pilawa-Podgurski, "A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter Achieving 4068 W/in3 Power Density and 99.0% Peak Efficiency," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 1335-1342, doi: 10.1109/APEC42165.2021.9487264.

1 IEEE PwRSoC revisited

Xavier Branca

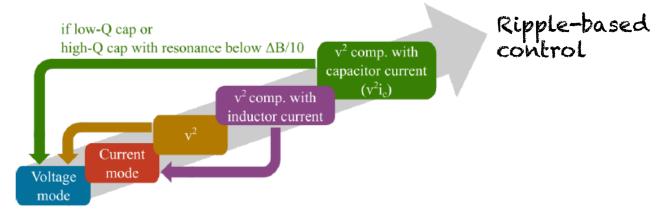
CMOS Laser Diode **Driver** for Time of Flight Applications

Hanh-Phuc Le

CMOS Active **Gate Driver** for Fast Control of WGB Power Transistor Commutations

Alexandar Prodic

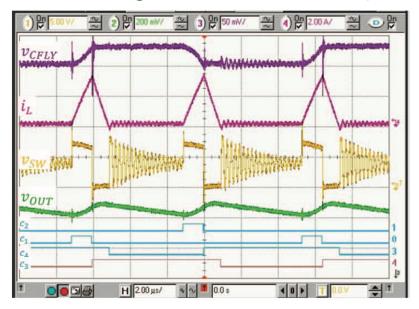
Topological and **Control Solutions** for Reduced Voltage Swing Hybrid Dc-Dc SMPS

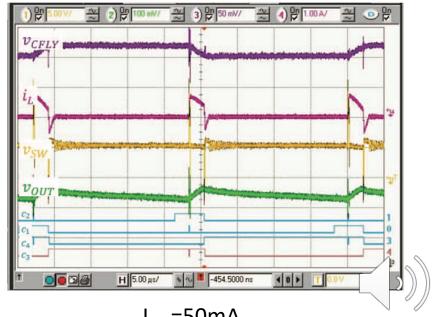

Jason Stauth

Hybrid Switched Capacitor Converters: Topologies, Trends, and Comparison

Bernhard Wicht, Monolithic GaN - Unleashing the Potential by Integrating Power, Sensing and Control

Control


O. García et al., "Teaching digital control of switch mode power supplies," 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 1904-1908, doi: 10.1109/ECCE.2011.6064018.


T. McRae et al., "Flying Capacitor Voltage Programed Mode Control for Switched-Capacitor Converters," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2082-2094, Sept. 2020, doi: 10.1109/JESTPE.2019.2953.09.

Control

N. Vukadinovic et al., "Discontinuous conduction mode of multi-level flying capacitor DC-DC converters and light-load digital controller," 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), 2017, pp. 1-7

 I_{out} =200mA

 I_{out} =50mA

High power

High Freq

Distributed

Harvesting

Sweet-spot

SC

Gate driver

Multi-level

Switched-

Capacitor

Dynamics

Requireme

Fast

nts

VHF

Gate driver

Class-E

Off-line

Hybrid

Optimal

response

GaN

Motor

Hybrid -

Current

control -

Digital

Resonant

drive

2021

ous

Hybrid

Control-

volt swing

Gate driver

Heterogene

	500	Revisi	ted - su	ımmary	
2008	2010	2012	2014	2016	-

Embedding

Distributed

in SoC

VHF

SC

Mixed-

control

Harvesting

signal

Sur Nevisited - Surini						
2008	2010	2012	2014	2016	20	

500	Revisi	ted - su	ımmary	
				1

	iiiiiiai y				
2008	2010	2012	2014	2016	2018

Revisited - summary	

HF

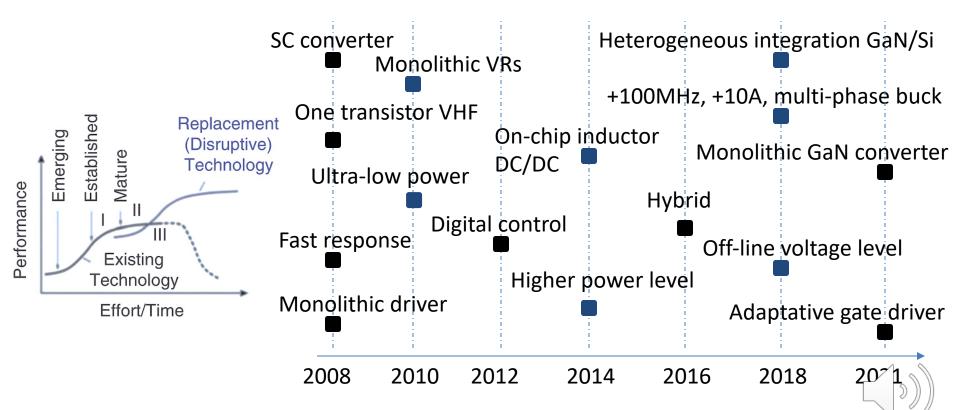
VHF

HF

inductive

On-chip

inductors

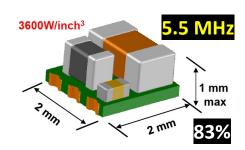

PwrSoC for

automotive

Ted DiBene, INTEL, 2012, Fine Grain On-die Integrated Magnetics: Breaking the Power/Performance Barriers

μDC/DC

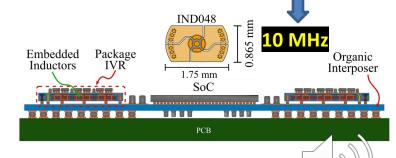
Global view



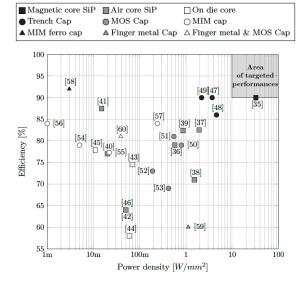
Trends

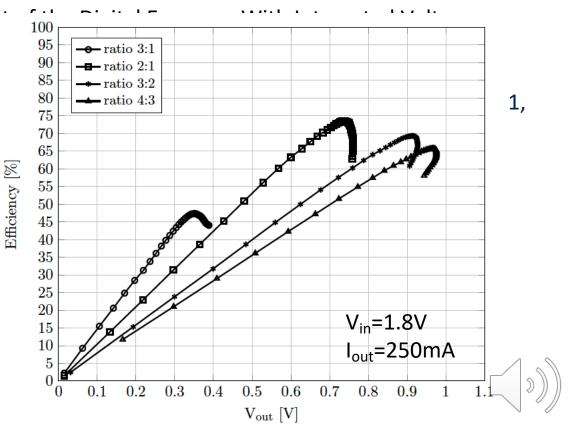

 Advanced Packaging Architectures for Heterogeneous Integration: embedding is a key enabler for active devices and passive devices

D. Jordan et al., "High Q-Factor **PCB Embedded** Flip-Chip Inductors With Multilayer CZTB Magnetic Sheet for Power Supply in Package (PwrSiP)," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 102-110, Feb. 2021, doi: 10.1109/JESTPE.2020.2983125.


C. Alvarez Barros et al., "Embedded Inductors Using **Composite Magnetic Materials** for 12–1-V Integrated Voltage Regulators," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 12, pp. 2183-2192, Dec. 2021, doi: 10.1109/TCPMT.2021.3116946.

Christophe Vaucourt,
Texas Instruments, PwrSoC'14


F. Neveu, IEEE TPE 2016



Trends

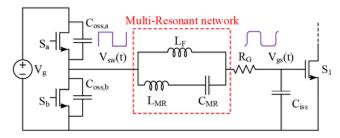
 Minimizing the Energy Footpri Regulators

T. Souvignet et al., "A Fully Integ Modulation Control in 28-nm FD no. 7, pp. 4984-4994, July 2016

Trends: HF & VHF converters

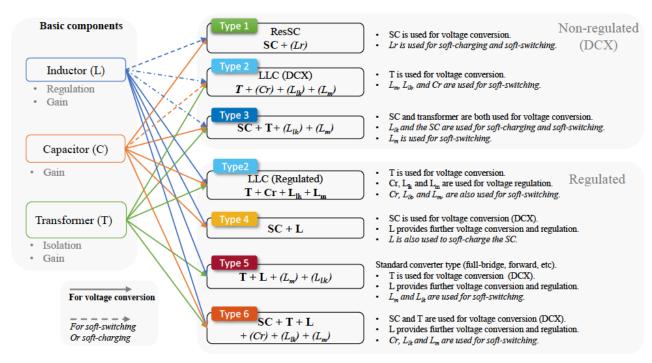
Y. Guan, C. Cecati, J. M. Alonso and Z. Zhang, "Review of High-Frequency High-Voltage-Conversion-Ratio DC–DC Converters," in *IEEE Journal of Emerging and Selected Topics in Industrial Electronics*, vol. 2, no. 4, pp. 374-389, Oct. 2021, doi: 10.1109/JESTIE.2021.3051554.

TABLE III
SUMMARY OF HIGH-FREQUENCY HVCR TOPOLOGIES


Transformer-based	inductor-based	SC	hybrid
High-voltage High-power	Low input voltage Low-power	Low-power High integration	Large voltage range Renewable
	High step-up Low current ripple		Grid

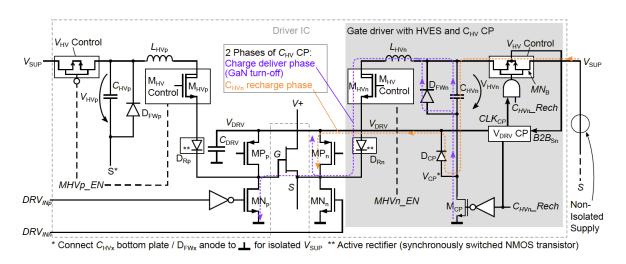
Trends: HF & VHF converters

J. Dai, et al., "Design of a 20MHz eGaN FET-Based Isolated Class E DC-DC Converter," 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2018.


Wang, Y., Lucia, O., Zhang, Z., Guan, Y. and Xu, D. (2020), Review of very high frequency power converters and related technologies. IET Power Electronics, 13: 1711-1721

Trends: hybrid SC + transformer

C. Li et al., "A Comparative Study of Hybrid DC-DC Converters by Indirect Power," 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 1294-1301.



Trends: gate drivers

IEEE Power Electronics magazine, « Recent advances in Gate Driver ICs for WBG FETs », 2019

A. Seidel et al., "Integrated Gate Drivers Based on High-Voltage Energy Storing for GaN Transistors," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3446-3454, Dec. 2018

Conclusion

- IEEE PwrSoC workshop philosophy and perimeter is well-known and enables regularly a strong discussion among engineers
- Topic "topologies & Control" focuses primarily on system-level demonstration
- Emerging ideas coexist with mature ideas (revisited wrt technology improvements)
- Low-power is one application area but
- Supported by technology progress, converters are investigated for high power level or high voltage level
- Gate drivers include more and more monitoring functions and adaptative operation flavors: they tend to be complex system and monolithic integration is investigated
- Control scheme is limited only by imagination but complex scheme may introduce stability issues difficult to track

