The eGaN[®] Technology Journey Continues

Physics Based Models of eGaN® Device **Failure Mechanisms**

EFFICIENT POWER CONVERSION

Reliability Reports and Methodology

Stressor	Device/ Package	Test Method	Instrinsic Failure Mechanism	EPC Test Results	
			Dielectric failure (TDDB)		
Voltage		HIGB	Threshold Shift	Phase 12 Report	
	Device		Threshold Shift		
		HIKB	R _{DS(on)} Shift		
		ESD	Dielectric rupture	[2,3,6,7,8,9,10]	
Current	Dovico	DC Current (ENA)	Electromigration	In Progress	
Current Device DC Current (F		DC Current (EM)	Thermomigration	In Progress	
Current + Voltage	Dovice	SOA	Thermal Runaway		
(Power)	Device	Short Circuit	Thermal Runaway		
Voltage		Hard-switching reliability	R _{DS(on)} Shift	Phase 12 Report	
Rising/Falling				· · · · · · · · · · · · · · · · · · ·	
Current Device		Pulsed Current	None found		
Rising/Falling		(Lidar reliability)			
Temperature	Package	HTS	None found	[6,7,8,9]	
		MSL1	None found	[3,4,5,6,7,8,9,10]	
		H3TRB	None found	[1,2,3,4,5,6,7,8,9,10]	
Humidity	Package	AC	None found	[4.5.6.7.8.9]	
manuary		Solderability	Solder corrosion	Phase 12 Report	
		uHAST	Dentrite Formation/Corrosion	[10]	
		тс	Solder Fatigue		
	Package	IOL	Solder Fatigue		
Mechanical/		Bending force test	Delamination	Phase 12 Report	
Thermo- mechanical		Bending Force Test	Solder Strength		
		Bending Force Test	Piezoelectric Effects		
		Die shear	Solder Strength		
		Package force	Film Cracking		

Stress – Voltage Gate-Source

Gate-Source Voltage Stress

Gate Acceleration: Time to Failure

EPC has tested certain part types to 3000 hours

Gate Failures Not in GaN

Impact Ionization Mechanism

Impact Ionization Model Development

$$G = \alpha_n \frac{|J_n|}{q} + \alpha_p \frac{|J_p|}{q} \qquad G \approx \alpha_n \frac{|J_n|}{q} \qquad J_n >> J_p$$

Ref	a _n (1/cm)	b _n (V/cm)	m
Ji et al.[12]	2.10E+09	3.70E+07	1
Ozbek [13]	9.20E+05	1.70E+07	1
Cao et al. [8]	4.48E+08	3.40E+07	1
Ooi et al. [15]	7.32E+07	7.16E+06	1.9

$$\alpha_n = a_n e^{-(b_n/F)^m} \qquad a_n(T) = a_{n;0}(1 - c\Delta T)$$

c = 6.5x10⁻³ K⁻¹

$$MTTF \propto \frac{Q_c}{G} \qquad MTTF \propto \frac{Q_c}{G} = \frac{qQ_c}{\alpha_n J_n} = \frac{qQ_c}{J_n \alpha_{n,0}(1 - c\Delta T)} exp\left[\left(\frac{b_n}{F}\right)^m\right]$$

$$MTTF = \frac{Q_c}{G} = \frac{qQ_c}{\alpha_n J_n} = \frac{A}{(1 - c\Delta T)} exp\left[\left(\frac{B}{V + V_0}\right)^m\right] \begin{bmatrix} m = 1.9 \\ V_0 = 1.0 V \\ B = 57.0 V \\ A = 1.7 \times 10^{-6} s \\ c = 6.5 \times 10^{-3} K^{-1} \end{bmatrix}$$

Theory vs. Experimental Results

Stress – Voltage

Drain-Source

Characterizing R_{DS(on)} Shift in Time

120 V overstress at 150°C (100 V Rated Device) 0.038 0.038 Max R_{DS(on)} at 150°C 0.036 0.036 0.034 0.034 $R_{DS(on)}$ (Ω) $R_{DS(on)}$ (Ω) 0.032 0.032 0.03 0.03 0.028 0.028 **Projected Time to Failure** 0.026 0.026 0.024 0.024 10¹⁰ 10¹⁵ 10²⁰ **10**¹⁰ 10⁵ 10¹⁵ 10⁵ Time (s) Time (s) $R(t) = R_0 (\alpha + \beta \ln[t])$

R_{DS(on)} **Projection Analysis**

Physics of R_{DS(on)} Shift – Hot Carrier Emission

Hard-Switching: Effect of V_{IN}

80 V 100 V 120 V 25000 hours 1000 hours 10 years **10**⁵ 10⁶

Hot Carrier Trapping Mechanism

Hot Carrier Trapping Model

$$f(E)dE \propto Ee^{-E/qF\lambda}dE \quad \frac{dQ_s}{dt} = A \int_{\Phi_{bl}+\beta Q_s}^{\infty} f(E)dE = A \int_{\Phi_{bl}+\beta Q_s}^{\infty} Ee^{-E/qF\lambda}dE$$

$$Q_s(t) = \frac{qF\lambda}{\beta} \log\left(1 + \frac{B\beta}{qF\lambda}t\right) \qquad R(t) = R_0 + \frac{C}{Q_P - Q_s} = R_0 + \frac{Q_P - \frac{qF\lambda}{\beta}}{Q_P - \frac{qF\lambda}{\beta}}$$

$$R(t) \approx R_0 + \frac{C}{Q_P} \left[1 + \frac{qF\lambda}{Q_P\beta} \log\left(1 + \frac{B\beta}{qF\lambda}t\right)\right] \qquad \tau_{LO} \propto exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \quad \lambda = v_{th}\tau_{LO}$$

$$\frac{\Delta R}{R} = \frac{R(t) - R(0)}{R(0)} \approx a + bF \exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \sqrt{T} \log\left(\frac{\hbar\omega_{LO}}{kT}\right)$$

 $\frac{dQ_S}{dt} = B \exp\left(-\frac{\beta Q_S}{qF\lambda}\right)$ $\frac{C}{\frac{\lambda}{\log\left(1+\frac{B\beta}{qF\lambda}t\right)}}$

 $\propto A\sqrt{kT}exp\left(\frac{\hbar\omega_{LO}}{kT}\right)$

 $\log(t)$

Putting it All Together – Hot Carrier Trapping Model

$$\frac{\Delta R}{R} = \frac{R(t) - R(0)}{R(0)} \approx a + bF \exp\left(\frac{\hbar\omega_{LO}}{kT}\right) \sqrt{T} \log\left(\frac{\hbar\omega_{LO}}{kT}\right) \sqrt{T} \log\left$$

$$= a + b \left[\frac{V_{DS}}{1 + exp[-\alpha(V_{DS} - V_{FD})]} \right]^2 exp\left(\frac{2\hbar\omega_{LO}}{kT_l} \right) \log(t)$$

a = 0.02 (unitless) b = 1.9E-8 (V⁻²) $\hbar\omega_{LO}$ = 92 meV V_{FD} = 100V (appropriate for Gen5 100V products only) $\alpha = 0.1 (V^{-1})$ t = time in min

g(t)

Model vs Measurement

Stress – Thermo Mechanical

Thermo-Mechanical Stress

-40°C to 125°C Temperature Cycling results for EPC2053

Product/DOE	EP(2053										
Stress condition: -40°C to 125°C	Status	300 cycles	550 cycles	850 cycles	1000 cycles	1250 cycles	1550 cycles	1750 cycles	1950 cycles	2150 cycles	2450 cycles
No Underfill	Completed	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	2/32 fails	3/32 fails	3/32 fails	3/32 fails
Henkels UF1137_H	On-going	0/40 fail	0/40 fail	0/40 fail	0/40 fail	0/40 fail					
Masterbond EP3UF_M	On-going	1/40 fails	7/40 fails	15/40 fails	25/40 fails	39/40 fails					
MC7685-UFS	Completed	0/32 fail	0/32 fail	0/32 fail	1/32 fails	17/32 fails	32/32 fails	32/32 fails			
MC7885-UF	Completed	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	1/32 fails	1/32 fails	1/32 fails
Namics 8410-4068	Completed	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail
Namice (19427.2 N	Completed	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail	0/32 fail
Mathics U0437-2_N	On-going	0/40 fail	0/40 fail	0/40 fail	0/40 fail	0/40 fail					

-55°C to 155°C Temperature Cycling results for EPC2053

	Product/DOE			EPC2053			
Stress condition:		Status	300	600	900	1100	1300
	-55C to 150C	Status	cycles	cycles	cycles	cycles	cycles
	No Underfill	Completed	0/16 fail	0/16 fail	0/16 fail	0/16 fail	1/16 fails
	Henkels UF1137_H	On-going	0/20 fail	0/20 fail	0/20 fail	0/20 fail	
	Masterbond EP3UF_M	On-going	5/20 fails	15/20 fails			
	MC7685-UFS	Completed	1/16 fails	9/16 fails	13/16 fails		
ĺ	MC7885-UF	Completed	2/16 fails	1/16 fails	7/16 fails		
ĺ	Namics 8410-406B	Completed	0/16 fail	0/16 fail	0/16 fail	0/16 fail	0/16 fail
ľ	Namics U8437-2_N	Completed	0/16 fail	0/16 fail	0/16 fail	0/16 fail	0/16 fail

Thermo-Mechanical Stress

Intermittent Operating Life – EPC2206

Results

eGaN FET Reliability

Field Failures by Category 1/1/2017-12/31/2020

Proven Reliability – 226 billion device hours in the field since January 1, 2017 with only 3 device failures.

Conclusions

- Traditional MOSFET qualification testing needs to be modified for GaN.
- Modifications need to be based on a deep knowledge of intrinsic failure mechanisms.
- By characterizing intrinsic failure mechanisms over all stress conditions, users can have confidence in lifetime predictions for a given mission profile.

to be ledge of ver all lifetime

EFFICIENT POWER CONVERSION

How To GaN Video Series

epc-co.com

GaN Transistors for Efficient Power Conversion Johan Strydom David Reusch John Glaser WILEY

3rd Edition Textbook

eGaN[®] FETs and ICs

Evaluation Kits

