

Industry Session 15: PwrSoC for Next-Gen Power

Si-IPD: Review of continuous improvements with regard to the new challenges in PwrSoC

Mohamed Mehdi Jatlaoui, Principal

Murata Integrated Passive Solutions mohamed.jatlaoui@murata.com

Friday, June 11, 2021

- 1- Introduction
- 2- Silicon Capacitors technology
- 3- 3D Silicon capacitors for power applications
 - PDN application (Mobile & HPC)
 - LiDAR application (Automotive)
- 4- Summary

1- Introduction

- Major Drivers in power electronics
 - High efficiency
 - Cost-effective
 - High level of integration
- Innovations in:
 - Integrated power passives
 - Capacitors
 - Inductors
 - Nano CMOS Technologies
 - Advanced packaging

1- Capacitors technologies

Metal Terminal

KRM Series

(25V~1kV, ~100uF)

GRU/LLU Series 🔪

Clinic System

Energy

(110um~, Cu VIA Connection)

Embedded

Long Lifetime, Down Sizing

High Capacitance GRM Series

(2.5V~100V, ~220uF)

EDLC DMF Series

(~1000mF, 4.2V)

Automotive Grade GCM Series (ISO9001, AEC-Q200, TS16949)

Safety Recognized DE Series

(13 countries Safety Approved, X2/Y1/Y2)

SNUBBER (SHIZUKI) MIC-UV Series

(~1.600V. ~4uF) DC-LINK (SHIZUKI)

MEC-DL/HV Series (~1,200V, ~1,600uF)

High Power Conversion

Polymer Electrolysis ECAS Series

(2.5V~25V, ~470uF)

Low ESL LLL/LLD Series (~4.3uF, 9.2uF)

LED lighting, TV, Air conditioner Smartphone, Tablet, Wearable

Factory Automation, PLC, Inverter

Industry

High Power

EVC Series

(~1.600V, ~4uF)

Consumer

Healthcare Imaging Therapy, Hearing Aid,

PA High Q **GOM Series**

Wind / PV Power

Generation, Oil/Gas System

(250V~500V, 1GHz~10GHz)

Ultra High Voltage, Communication

High Reliability

Implant Class D **GCR/GCH Series**

(ISO13485)

Ultra Small Size GRM01/02 Series (008004, 01005)

Non Magnetic MA Series (MRI application)

Multilayer RDE Series

(~220uF, ~2kV)

Ultra High Voltage **DHS/DHK Series**

(DC10~50kV,AC10~25kV)

(6kV~10kV)

High Density

Miniaturization

Low profile

Low ESL

Low ESR

High Reliability

Mechanical strength

High Stability

- 1- Introduction
- 2- Silicon Capacitors technology
- 3- 3D Silicon capacitors for power applications
 - PDN application (Mobile & HPC)
 - LiDAR application (Automotive)
- 4- Summary

2- Silicon Capacitors Technology

2 parallelized capacitors in a MIMIM architecture to increase the capacitance value

Miniaturization

New market opportunities enabled by reduction in product size

Electrical characteristics

Wide frequency range, temp. stability, low leakage, low ESR, low ESL

Reliability

Low failure rates even at high temperatures with predictable failure modes

Other key advantages

Non-magnetic, customized products

2- Key features

2- Different configurations

Stand alone and standard components :

horizontal and vertical capacitors

Component arrays:

combination of several passive components into a single silicon die

use of semiconductor assembly technologies to build high performance 3D structures

2- Market Drivers and challenges

- 1- Introduction
- 2- Silicon Capacitors technology
- 3- 3D Silicon capacitors for power applications
 - PDN application (Mobile & HPC)
 - LiDAR application (Automotive)
- 4- Summary

3- PDN Applications

- Power supply impedance must be made small over a wide frequency range
- One capacitor cannot achieve the necessary impedance, multiple capacitors are positioned hierarchically to achieve the target power supply impedance
- Due to space constraints, on-chip capacitance is not enough to reduce impedance at high frequencies.

3- PDN Applications_Requirements

Thickness

Low profile capacitor is needed

<u>ESL</u>

Microfabrication of process Future Transistors Revolutionary Evolutionary 2015 2020 2025

10 nm \rightarrow 7 nm \rightarrow 5 nm...

Lower target impedance

Low ESL capacitor is needed

3- PDN Applications_Improvements

Low profile

- Achieve low thickness (~ 50 μm)
- ➤ Higher robustness

Multi-terminal

Design many terminals on capacitor

Extremely low ESL < 10pH

3- PDN Applications_Benefits

Si-Cap intrinsic ESL is lower using fine bump pitch

Assembly ESL is reduced

Multi-term generate smaller current loop → lower ESL Particularly with multi-terminals (shorter distance between pads)

Typical Assembly Schema_Cross section view

 $Z_{\rm peak}$: anti-resonance between Chip and Board

- 1- Introduction
- 2- Silicon Capacitors technology
- 3- 3D Silicon capacitors for power applications
 - PDN application (Mobile & HPC)
 - LiDAR application (Automotive)
- 4- Summary

3- LiDAR Applications

- LiDAR

 Emitter

 Detector T_d $d = (c \times T_d)/2 [c; speed of light]$ d : the distance to the target object
- In a LIDAR system to increase resolution current needs to be switched as quickly as possible through the laser diode.
- Gan FET's have very low input capacitance and can switch on very fast

Higher space resolution and higher time resolution

3- LiDAR Applications_Requirements

General requirements for LiDAR

- Longer range detection
- Higher space and time resolution
- Compliance with eye safety standards

General requirements for laser pulse

- Higher peak power
- Shorter pulse width
- Stability of pulse
- High reliability

Needs for Capacitor

- Withstand higher voltage : 120V as applied voltage
- Higher capacitance value : ~ 10nF
- Low ESL: 100pH for whole circuit
- Stable capacitance value vs temperature (up to 105°C)
- Availability of Wire-bonding

Needs for Interposer

- Withstand higher voltage: 80V as applied voltage
- Low ESL: 100pH for whole circuit

3- LiDAR Applications_Improvements

Lower peak power & longer pulse width

3- LiDAR Applications_Benefits

- 1- Introduction
- 2- Silicon Capacitors technology
- 3- 3D Silicon capacitors for power applications
 - PDN application (Mobile & HPC)
 - LiDAR application (Automotive)
- 4- Summary

4- Summary

- PwrSiP and PwrSoC are pushing passive devices to their technological limits
- Many parameters to take into account: specific to the passive component but also in relation with the surrounding environment (packaging, parasitic)
- Silicon technology presents a good alternative to classical solutions
- PDN applications (Mobile & HPC)
 - Requirements in terms of high density, low profile and low ESL
 - Silicon capacitors flexibility: process, materials, design, interconnects and assembly
 - Challenges in integration, testability, measurements (very low parasitic), simulations (electrical and mechanical robustness)
- LiDAR applications (Automotive)
 - High voltage, low ESL loop, Thermal stability
 - Silicon capacitive interposer presents innovative solution from electrical and assembly point of view
 - Challenges: automotive reliability standard (AEC-Q100) and Eye safety (IEC 60825)

Thanks a lot for your time and attention!

Any questions and/or comments?